Skip to main content

Domain Adaptation Transfer Extreme Learning Machines

  • Conference paper
Proceedings of ELM-2014 Volume 1

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 3))

Abstract

Extreme learning machines (ELMs) have been confirmed to be efficient and effective learning techniques for pattern recognition and regression. However, ELMs primarily focus on the supervised, semi-supervised and unsupervised learning problems in single domain and the generalization ability in multiple domains based learning issues is hardly studied. This paper aims to propose a unified framework of ELMs with domain adaptation and improve their transfer learning capability in cross domains without loss of the computational efficiency of traditional ELMs. We integrate domain adaptation into ELMs and two algorithms including source domain adaptation transfer ELM (TELM-SDA) and target domain adaptation transfer ELM (TELM-TDA) are proposed. For insight of the difference among ELM, TELM-SDA and TELM-TDA, two remarks are provided. Experiments on the popular sensor drift big data with multiple batches in machine olfaction, the results clearly demonstrate the characteristics of the proposed domain adaptation transfer ELMs that they can not only copy with sensor drift efficiently without cumbersome measures comparable to state-of-the-art methods but also bring new perspectives for ELM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  2. Feng, G., Huang, G.B., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20, 1352–1357 (2009)

    Article  Google Scholar 

  3. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Systems, Man, Cybernetics: Part B 42, 513–529 (2012)

    Article  Google Scholar 

  4. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural. Netw. 17, 879–892 (2006)

    Article  Google Scholar 

  5. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recognition 38, 1759–1763 (2005)

    Article  MATH  Google Scholar 

  6. Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101, 229–242 (2013)

    Article  Google Scholar 

  7. Bai, Z., Huang, G.B., Wang, D., Wang, H., Brandon Westover, M.: Sparse Extreme Learning Machine for Classification. IEEE Trans. Cybernetics (2014)

    Google Scholar 

  8. Li, X., Mao, W., Jiang, W.: Fast sparse approximation of extreme learning machine. Neurocomputing 128, 96–103 (2014)

    Article  MATH  Google Scholar 

  9. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-Supervised and Unsupervised Extreme Learning Machines. IEEE Trans. Cybernetics (2014)

    Google Scholar 

  10. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proc. Conf. Emp. Methods Natural Lang. Process, pp. 120–128 (2006)

    Google Scholar 

  11. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive SVMs. In: Proc. Int. Conf. Multimedia, pp. 188–197 (2007)

    Google Scholar 

  12. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22, 199–210 (2011)

    Article  Google Scholar 

  13. Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via auxiliary classifiers. Proc. Int. Conf. Mach. Learn., 289–296 (2009)

    Google Scholar 

  14. Duan, L., Xu, D., Tsang, I.W.: Domain Adaptation from Multiple Sources: Domain-Dependent Regularization Approach. IEEE Trans. Neur. Netw. Learn. Syst. 23, 504–518 (2012)

    Article  Google Scholar 

  15. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: An unsupervised approach. In: Proc. ICCV, pp. 999–1006 (2011)

    Google Scholar 

  16. Liu, Q., Li, X., Ye, M., Sam Ge, S., Du, X.: Drift Compensation for Electronic Nose by Semi-Supervised Domain Adaptation. IEEE Sensors Journal 14, 657–665 (2014)

    Article  Google Scholar 

  17. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Zhang, L., Tian, F.C.: A new kernel discriminant analysis framework for electronic nose recognition. Analytica Chimica Acta 816, 8–17 (2014)

    Article  Google Scholar 

  19. Zhang, L., Tian, F., Nie, H., Dang, L., Li, G., Ye, Q., Kadri, C.: Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actu. B. 174, 114–125 (2012)

    Article  Google Scholar 

  20. Brudzewski, K., Osowski, S., Dwulit, A.: Recognition of coffee using differential electronic nose. IEEE Trans. Instru. Meas. 61, 1803–1810 (2012)

    Article  Google Scholar 

  21. Tudu, B., Metla, A., Das, B., Bhattacharyya, N., Jana, A., Ghosh, D., Bandyopadhyay, R.: Towards Versatile Electronic Nose Pattern Classifier for Black Tea Quality Evaluation: An Incremental Fuzzy Approach. IEEE Trans. Instru. Meas. 58, 3069–3078 (2009)

    Article  Google Scholar 

  22. Gardner, J.W., Shin, H.W., Hines, E.L.: An electronic nose system to diagnose illness. Sens. Actu. B. 70, 19–24 (2000)

    Article  Google Scholar 

  23. Zhang, L., Tian, F., Kadri, C., Pei, G., Li, H., Pan, L.: Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose. Sens. Actu. B. 160, 760–770 (2011)

    Article  Google Scholar 

  24. Zhang, L., Tian, F.: Performance Study of Multilayer Perceptrons in a Low-Cost Electronic Nose. IEEE Trans. Instru. Meas. 63 (2014)

    Google Scholar 

  25. Di Carlo, S., Falasconi, M.: Drift Correction Methods for Gas Chemical Sensors in Artificial Olfaction Systems: Techniques and Challenges. Advances in Chemical Sensors, pp. 305–326 (2012)

    Google Scholar 

  26. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actu. B. 167, 320–329 (2012)

    Article  Google Scholar 

  27. Romain, A.C., Nicolas, J.: Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sens. Actu. B. 146, 502–506 (2010)

    Article  Google Scholar 

  28. Zhang, L., Tian, F., Liu, S., Dang, L., Peng, X., Yin, X.: Chaotic time series prediction of E-nose sensor drift in embedded phase space. Sens. Actu. B. 182, 71–79 (2013)

    Article  Google Scholar 

  29. Arul Pon Daniel, D., Thangavel, K., Manavalan, R., Chandra, S., Boss, R.: ELM-Based Ensemble Classifier for Gas Sensor Array Drift Dataset. Computational Intelligence, Cyber Security and Computational Models. Advances in Intelligent Systems and Computing 246, 89–96 (2014)

    Article  Google Scholar 

  30. Lujan, I.R., Fonollosa, J., Vergara, A., Homer, M., Huerta, R.: On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemometrics and Intelligent Laboratory Systems 130, 123–134 (2014)

    Article  Google Scholar 

  31. http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, L., Zhang, D. (2015). Domain Adaptation Transfer Extreme Learning Machines. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, KA. (eds) Proceedings of ELM-2014 Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-14063-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14063-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14062-9

  • Online ISBN: 978-3-319-14063-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics