Skip to main content

Therapeutic Aspects of Nanomedicines in Stroke Treatment

  • Chapter
  • First Online:
Advancement in the Pathophysiology of Cerebral Stroke

Abstract

Stroke is one of the major causes of death worldwide, and the thrombolytic drug alteplase (tissue plasminogen activator or tPA) is the only treatment available for acute ischemic stroke; however, its use is limited by its short therapeutic window. Many potential therapeutic and diagnostic neuroprotectants to the brain are available, but, unfortunately, most of them are limited by the blood-brain barrier (BBB). Conversely, nanoparticles (NPs) easily cross the BBB with no undesired side effect and alteration of the integrity of BBB. Thus, NPs have created new facet in stroke therapy. The nanocarriers-based preclinical and clinical research in thrombolytic drug delivery is mentioned. Preclinical research carried out on different thrombolytic drug-loaded polymer, lipid, and magnetic nanoparticles showed an enhanced thrombolytic effect with least adverse effects. Targeted nanocarriers displayed an enhanced accumulation into thrombolytic area. NP-based drug delivery opens up new route for the management of thrombotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., et al. (2014). Heart disease and stroke statistics – 2014 update: A report from the American Heart Association. Circulation, 129, e28–e292.

    Article  PubMed  CAS  Google Scholar 

  2. The European Stroke Initiave Executive Committee and the Eusi Writing Committee. (2003). European stroke initiative recommendations for stroke management – update 2003. Cerebrovascular Diseases, 16, 311–337.

    Article  Google Scholar 

  3. Shcharbina, N., Shcharbin, D., & Bryszewska, M. (2013). Nanomaterials in stroke treatment perspectives. Stroke, 44, 2351–2355.

    Article  PubMed  Google Scholar 

  4. Rosamond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., et al. (2008). American Heart Association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics–2008 update: A report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation, 117, e25–e146.

    PubMed  Google Scholar 

  5. Deb, P., Sharma, S., & Hassan, K. M. (2010). Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology, 17, 197–218.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, J. M., Grabb, M. C., Zipfel, G. J., & Choi, D. W. (2000). Brain tissue responses to ischemia. The Journal of Clinical Investigation, 106, 723–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yeh, W. L., Lin, C. J., & Fu, W. M. (2008). Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Molecular Pharmacology, 73, 170–177.

    Article  CAS  PubMed  Google Scholar 

  8. Love, S. (1999). Oxidative stress in brain ischemia. Brain Pathology, 9, 119–131.

    Article  CAS  PubMed  Google Scholar 

  9. Kuroiwa, T., Ting, P., Martinez, H., & Klatzo, I. (1985). The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathologica, 68, 122–129.

    Article  CAS  PubMed  Google Scholar 

  10. Pillai, D. R., Dittmar, M. S., Baldaranov, D., Heidemann, R. M., Henning, E. C., Schuierer, G., Bogdahn, U., & Schlachetzki, F. (2009). Cerebral ischemia - reperfusion injuryin rats – a 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation. Journal of Cerebral Blood Flow & Metabolism, 29, 1846–1855.

    Article  Google Scholar 

  11. Zhang, P. L., Wang, Y. X., Chen, Y., Zhang, C. H., Li, C. H., Dong, Z., Yin, H., Zhang, F. F., & Wang, J. H. (2015). Use of intravenous thrombolytic therapy in acute ischemic stroke patients: Evaluation of clinical outcomes. Cell Biochemistry and Biophysics, 72(1), 11–17.

    Article  CAS  PubMed  Google Scholar 

  12. Rajah, G. B., & Ding, Y. (2017). Experimental neuroprotection in ischemic stroke: A concise review. Neurosurgical Focus, 42, 1–8.

    Google Scholar 

  13. Campbell, B. C., Mitchell, P. J., Kleinig, T. J., Dewey, H. M., Churilov, L., Yassi, N., et al. (2015). Endovascular therapy for ischemic stroke with perfusion-imaging selection. The New England Journal of Medicine, 372, 1009–1018.

    Article  CAS  PubMed  Google Scholar 

  14. Berkhemer, O. A., Fransen, P. S., Beumer, D., van den Berg, L. A., Lingsma, H. F., Yoo, A. J., et al. (2015). A randomized trial of intraarterial treatment for acute ischemic stroke. The New England Journal of Medicine, 372, 11–20.

    Article  PubMed  CAS  Google Scholar 

  15. Bracard, S., Ducrocq, X., Mas, J. L., Soudant, M., Oppenheim, C., Moulin, T., et al. (2016). Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): A randomised controlled trial. Lancet Neurology, 15, 1138–1147.

    Article  CAS  PubMed  Google Scholar 

  16. Goyal, M., Demchuk, A. M., Menon, B. K., Eesa, M., Rempel, J. L., Thornton, J., et al. (2015). Randomized assessment of rapid endovascular treatment of ischemic stroke. The New England Journal of Medicine, 372, 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  17. Jovin, T. G., Chamorro, A., Cobo, E., de Miquel, M. A., Molina, C. A., Rovira, A., et al. (2015). Thrombectomy within 8 hours after symptom onset in ischemic stroke. The New England Journal of Medicine, 372, 2296–2306.

    Article  CAS  PubMed  Google Scholar 

  18. Mocco, J., Zaidat, O., Von Kummer, R., Yoo, A., Gupta, R., Lopes, D., Frei, D., Sit, S. P., Bose, A., & Khatri, P. (2015). Results of the THERAPY trial: A prospective, randomized trial to define the role of mechanical thrombectomy as adjunctive treatment to IV rtPA in acute ischemic stroke. International Journal of Stroke, 10, 10.

    Article  Google Scholar 

  19. Saver, J. L., Goyal, M., Bonafe, A., Diener, H. C., Levy, E. I., Pereira, V. M., et al. (2015). Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. The New England Journal of Medicine, 372, 2285–2295.

    Article  CAS  PubMed  Google Scholar 

  20. Lakhan, S. E., Kirchgessner, A., Tepper, D., & Leonard, A. (2013). Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Frontiers in Neurology, 4, 32.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y. (2012). Organophosphate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neurotoxicology, 33, 391–400.

    Article  CAS  PubMed  Google Scholar 

  22. Dihne, M., Grommes, C., Lutzenburg, M., Witte, O. W., & Block, F. (2002). Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebralischemia in rats. Stroke, 33, 3006–3011.

    Article  PubMed  Google Scholar 

  23. Baron, J. C., Yamauchi, H., Fujioka, M., & Endres, M. (2014). Selective neuronal loss in ischemic stroke and cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 34, 2–18.

    Article  PubMed  Google Scholar 

  24. Chen, Y., Garcia, G. E., Huang, W., & Constantini, S. (2014). The involvement of secondary neuronal damage in the development of neuropsychiatric disorders following brain insults. Frontiers in Neurology, 5, 22.

    PubMed  PubMed Central  Google Scholar 

  25. Jahan, R., & Vinuela, F. (2009). Treatment of acute ischemic stroke: Intravenous and endovascular therapies. Expert Review of Cardiovascular Therapy, 7, 375–387.

    Article  CAS  PubMed  Google Scholar 

  26. Panagiotou, S., & Saha, S. (2015). Therapeutic benefits of nanoparticles in stroke. Frontiers in Neuroscience, 9, 182.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Messe, S. R., Fonarow, G. C., Smith, E. E., Kaltenbach, L., Olson, D. M., Kasner, S. E., & Schwamm, L. H. (2012). Use of tissue-type plasminogen activator before and after publication of the European Cooperative Acute Stroke Study III in Get With The Guidelines-Stroke. Circulation. Cardiovascular Quality and Outcomes, 5, 321–326.

    Article  PubMed  Google Scholar 

  28. Chen, Z. M., Sandercock, P., Pan, H. C., Counsell, C., Collins, R., & Liu, L. S. (2000). Indications for early aspirin use in acute ischemic stroke a combined analysis of 40,000 randomized patients from the Chinese acute stroke trial and the international stroke trial. Stroke, 31, 1240–1249.

    Article  CAS  PubMed  Google Scholar 

  29. Ghosh, S., Das, N., Mandal, A. K., Dungdung, S. R., & Sarkar, S. (2010). Mannosylated liposomal cytidine 5′ diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain. Neuroscience, 171, 1287–1299.

    Article  CAS  PubMed  Google Scholar 

  30. Sasaki, T., Kassell, N. F., Fujiwara, S., Torner, J. C., & Spallone, A. (1986). The effects of hyperosmolar solutions on cerebral arterial smooth muscle. Stroke, 17, 1266–1271.

    Article  CAS  PubMed  Google Scholar 

  31. Beletsi, A., Klepetsanis, L. L. P., Ithakissios, D. S., & Avgoustakis, K. (1999). Effect of preparative variables on the properties of poly (dl-lactide-co-glycolide)–methoxypoly(ethyleneglycol) copolymers related to their application in controlled drug delivery. International Journal of Pharmaceutics, 182, 187–197.

    Article  CAS  PubMed  Google Scholar 

  32. Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86, 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., & Amidon, G. L. (1997). The mechanism of uptake of biodegradable microparticles in caco-2cells is size dependent. Pharmaceutical Research, 14, 1568–1573.

    Article  CAS  PubMed  Google Scholar 

  34. Xie, F., Yao, N., Qin, Y., Zhang, Q., Chen, H., Yuan, M., Tang, J., Li, X., Fan, W., Zhang, Q., Wu, Y., Hai, L., & He, Q. (2012). Investigation of glucose-modified liposomes using polyethyleneglycols with different chain lengths as the linkers for brain targeting. International Journal of Nanomedicine, 7, 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takamiya, M., Miyamoto, Y., Yamashita, T., Deguchi, K., Ohta, Y., & Abe, K. (2012). Strong neuroprotection with a novel platinum nanoparticles against ischemic stroke-and tissue plasminogen activator-related brain damages in mice. Neuroscience, 221, 47–55.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, C. K., Kim, T., Choi, I. Y., Soh, M., Kim, D., Kim, Y. J., Park, H. K., Park, S. P., Park, S., Yu, T., Yoon, B. W., Lee, S. H., & Hyeon, T. (2012). Ceria nanoparticles that can protect against ischemic stroke. Angewandte Chemie (International Edition in English), 51, 11039–11043.

    Article  CAS  Google Scholar 

  37. Sierra, S., Ramos, M. C., Molina, P., Esteo, C., Vazquez, J. A., & Burgos, J. S. (2011). Statins as neuroprotectants: A comparative in vitro study of lipophilicity, blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. Journal of Alzheimer’s Disease, 23, 307–318.

    Article  CAS  PubMed  Google Scholar 

  38. So, G., Nakagawa, S., Morofuji, Y., Hiu, T., Hayashi, K., Tanaka, K., Suyama, K., Deli, M. A., Nagata, I., Matsuo, T., & Niwa, M. (2014). Candesartan improves ischemia-induce dimpairment of the blood-brain barrier in vitro. Cellular and Molecular Neurobiology, 35, 563–572.

    Article  PubMed  CAS  Google Scholar 

  39. Jickling, G. C., & Sharp, F. R. (2011). Blood biomarkers of ischemic stroke. Neurotherapeutics, 8, 349–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, K. Y., Kwong, G. A., Warren, A. D., Wood, D. K., & Bhatia, S. N. (2013). Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano, 7, 9001–9009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varna, M., Juenet, M., Bayles, R., Mazighi, M., Chauvierre, C., & Letourneur, D. (2015). Nanomedicine as a strategy to fight thrombotic diseases. Future Science OA, 1, FSO46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim, J. Y., Kim, J. K., Park, J. S., Byun, Y., & Kim, C. K. (2009). The use of pegylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials, 30(29), 5751–5756.

    Article  CAS  PubMed  Google Scholar 

  43. Koshkaryev, A., Sawant, R., Deshpande, M., & Torchilin, V. (2013). Immunoconjugates and long circulating systems: Origins, current state of the art and future directions. Advanced Drug Delivery Reviews, 65(1), 24–35.

    Article  CAS  PubMed  Google Scholar 

  44. Rabanel, J. M., Hildgen, P., & Banquy, X. (2014). Assessment of peg on polymeric particles surface, a key step in drug carrier translation. Journal of Controlled Release, 185, 71–87.

    Article  CAS  PubMed  Google Scholar 

  45. Ruiz-Esparza, G. U., Flores-Arredondo, J. H., Segura-Ibarra, V., Torre-Amione, G., Ferrari, M., Blanco, E., & Serda, R. E. (2013). The physiology of cardiovascular disease and innovative liposomal platforms for therapy. International Journal of Nanomedicine, 8, 629–640.

    PubMed  PubMed Central  Google Scholar 

  46. Bowey, K., Tanguay, J. F., & Tabrizian, M. (2012). Liposome technology for cardiovascular disease treatment and diagnosis. Expert Opinion on Drug Delivery, 9(2), 249–265.

    Article  CAS  PubMed  Google Scholar 

  47. Tassa, C., Shaw, S. Y., & Weissleder, R. (2011). Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of Chemical Research, 44(10), 842–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, J. P., Yang, P. C., Ma, Y. H., & Wu, T. (2011). Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydrate Polymers, 84(1), 364–372.

    Article  CAS  Google Scholar 

  49. Uesugi, Y., Kawata, H., Jo, J., Saito, Y., & Tabata, Y. (2010). An ultrasoundresponsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. Journal of Controlled Release, 147(2), 269–277.

    Article  CAS  PubMed  Google Scholar 

  50. Robert, D., Fayol, D., Le Visage, C., Frasca, G., Brulé, S., Ménager, C., Gazeau, F., Letourneur, D., & Wilhelm, C. (2010). Magnetic micromanipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials, 31(7), 1586–1595.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng, K., Li, T. S., Malliaras, K., Davis, D. R., Zhang, Y., & Marban, E. (2010). Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circulation Research, 106(10), 1570–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Silva, A. K., Luciani, N., Gazeau, F., Aubertin, K., Bonneau, S., Chauvierre, C., Letourneur, D., & Wilhelm, C. (2015). Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine, 11(3), 645–655.

    Article  CAS  PubMed  Google Scholar 

  53. Collen, D., & Lijnen, H. R. (2005). Thrombolytic agents. Thrombosis and Haemostasis, 93(4), 627–630.

    Article  CAS  PubMed  Google Scholar 

  54. Kotb, E. (2014). The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnology Progress, 30(3), 656–672.

    Article  CAS  PubMed  Google Scholar 

  55. Butcher, K., Shuaib, A., Saver, J., Donnan, G., Davis, S. M., Norrving, B., Wong, K. S., Abd-Allah, F., Bhatia, R., & Khan, A. (2013). Thrombolysis in the developing world: Is there a role for streptokinase? International Journal of Stroke, 8(7), 560–565.

    Article  PubMed  Google Scholar 

  56. Kunamneni, A., Abdelghani, T. T., & Ellaiah, P. (2007). Streptokinase – the drug of choice for thrombolytic therapy. Journal of Thrombosis and Thrombolysis, 23(1), 9–23.

    Article  CAS  PubMed  Google Scholar 

  57. Baruah, D. B., Dash, R. N., Chaudhari, M. R., & Kadam, S. S. (2006). Plasminogen activators: A comparison. Vascular Pharmacology, 44(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  58. Vaidya, B., Agrawal, G. P., & Vyas, S. P. (2011). Platelets directed liposomes for the delivery of streptokinase: Development and characterization. European Journal of Pharmaceutical Sciences, 44(5), 589–594.

    Article  CAS  PubMed  Google Scholar 

  59. Leach, J. K., O’Rear, E. A., Patterson, E., Miao, Y., & Johnson, A. E. (2003). Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thrombosis and Haemostasis, 90(1), 64–70.

    Article  CAS  PubMed  Google Scholar 

  60. Leach, J. K., Patterson, E., & O’Rear, E. A. (2004). Encapsulation of a plasminogen activator speeds reperfusion, lessens infarct and reduces blood loss in a canine model of coronary artery thrombosis. Thrombosis and Haemostasis, 91(6), 1213–1218.

    Article  CAS  PubMed  Google Scholar 

  61. Leach, J. K., Patterson, E., & O’Rear, E. A. (2004). Distributed intraclot thrombolysis: Mechanism of accelerated thrombolysis with encapsulated plasminogen activators. Journal of Thrombosis and Haemostasis, 2(9), 1548–1555.

    Article  CAS  PubMed  Google Scholar 

  62. Kunamneni, A., Ravuri, B. D., Saisha, V., Ellaiah, P., & Prabhakhar, T. (2008). Urokinase – A very popular cardiovascular agent. Recent Patents on Cardiovascular Drug Discovery, 3(1), 45–58.

    Article  CAS  PubMed  Google Scholar 

  63. Jin, H. J., Zhang, H., Sun, M., Zhang, B. G., & Zhang, J. W. (2013). Urokinase-coated chitosan nanoparticles for thrombolytic therapy: Preparation and pharmacodynamics in vivo. Journal of Thrombosis and Thrombolysis, 36(4), 458–468.

    Article  CAS  PubMed  Google Scholar 

  64. Bi, F., Zhang, J., Su, Y., Tang, Y. C., & Liu, J. N. (2009). Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials, 30(28), 5125–5130.

    Article  CAS  PubMed  Google Scholar 

  65. Marsh, J. N., Hu, G., Scott, M. J., Zhang, H., Goette, M. J., Gaffney, P. J., Caruthers, S. D., Wickline, S. A., Abendschein, D., & Lanza, G. M. (2011). A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine (London), 6(4), 605–615.

    Article  CAS  Google Scholar 

  66. Kawata, H., Uesugi, Y., Soeda, T., Takemoto, Y., Sung, J. H., Umaki, K., Kato, K., Ogiwara, K., Nogami, K., Ishigami, K., Horii, M., Uemura, S., Shima, M., Tabata, Y., & Saito, Y. (2012). A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. Journal of the American College of Cardiology, 60(24), 2550–2557.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, J., Guo, D., Zhang, Y., Wu, W., Ran, H., & Wang, Z. (2014). Construction and evaluation of Fe(3)O(4)-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS Applied Materials & Interfaces, 6(8), 5566–5576.

    Article  CAS  Google Scholar 

  68. Ma, Y. H., Wu, S. Y., Wu, T., Chang, Y. J., Hua, M. Y., & Chen, J. P. (2009). Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials, 30(19), 3343–3351.

    Article  CAS  PubMed  Google Scholar 

  69. Kempe, M., Kempe, H., Snowball, I., Wallén, R., Arza, C. R., Götberg, M., & Olsson, T. (2010). The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials, 31(36), 9499–9510.

    Article  CAS  PubMed  Google Scholar 

  70. Mccarthy, J. R., Sazonova, I. Y., Erdem, S. S., Hara, T., Thompson, B. D., Patel, P., Botnaru, I., Lin, C. P., Reed, G. L., Weissleder, R., & Jaffer, F. A. (2012). Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine (London, England), 7(7), 1017–1028.

    Article  CAS  Google Scholar 

  71. Absar, S., Nahar, K., Kwon, Y. M., & Ahsan, F. (2013). Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharmaceutical Research, 30(6), 1663–1676.

    Article  CAS  PubMed  Google Scholar 

  72. Laing, S. T., Moody, M. R., Kim, H., Smulevitz, B., Huang, S. L., Holland, C. K., McPherson, D. D., & Klegerman, M. E. (2012). Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thrombosis Research, 130(4), 629–635.

    Article  CAS  PubMed  Google Scholar 

  73. Brujan, E. A. (2009). Cardiovascular cavitation. Medical Engineering & Physics, 31(7), 742–751.

    Article  Google Scholar 

  74. Unger, E., Porter, T., Lindner, J., & Grayburn, P. (2014). Cardiovascular drug delivery with ultrasound and microbubbles. Advanced Drug Delivery Reviews, 72, 110–126.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, X., Leeman, J. E., Wang, J., Pacella, J. J., & Villanueva, F. S. (2014). New insights into mechanisms of sonothrombolysis using ultrahigh-speed imaging. Ultrasound in Medicine & Biology, 40(1), 258–262.

    Article  Google Scholar 

  76. Laing, S. T., Moody, M., Smulevitz, B., Kim, H., Kee, P., Huang, S., Holland, C. K., & McPherson, D. D. (2011). Ultrasoundenhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model – brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1357–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hagisawa, K., Nishioka, T., Suzuki, R., Maruyama, K., Takase, B., Ishihara, M., Kurita, A., Yoshimoto, N., Nishida, Y., Iida, K., Luo, H., & Siegel, R. J. (2013). Thrombustargeted perfluorocarbon-containing liposomal bubbles for enhancement of ultrasonic thrombolysis: In vitro and in vivo study. Journal of Thrombosis and Haemostasis, 11(8), 1565–1573.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

LR gratefully acknowledges the financial support provided by Young Scientist Grant (SB/FT/CS-034/2013), Department of Science and Technology (DST)-SERB, New Delhi, India (GAP-0206) and CSIR-CDRI, Lucknow for providing facility and support.

Future Perspective

The nanocarrier should encapsulate a maximum amount of thrombolytic drug and shield the drug from enzymatic degradation keeping the thrombolytic efficacy same. It should also release the drug in the site of thrombus. All these features are mandatory for a better patient care.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray, L. (2019). Therapeutic Aspects of Nanomedicines in Stroke Treatment. In: Patnaik, R., Tripathi, A., Dwivedi, A. (eds) Advancement in the Pathophysiology of Cerebral Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-13-1453-7_11

Download citation

Publish with us

Policies and ethics