Skip to main content
Log in

Streptokinase—the drug of choice for thrombolytic therapy

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Thrombosis, the blockage of blood vessels with clots, can lead to acute myocardial infarction and ischemic stroke, both leading causes of death. Other than surgical interventions to remove or by pass the blockage, or the generation of collateral vessels to provide a new blood supply, the only treatment available is the administration of thrombolytic agents to dissolve the blood clot. This article describes a comprehensive review of streptokinase (SK). We discuss the biochemistry and molecular biology of SK, describing the mechanism of action, structures, confirmational properties, immunogenecity, chemical modification, and cloning and expression. The production and physico-chemical properties of this SK are also discussed. In this review, considering the properties and characteristics of SK that make it the drug of choice for thrombolytic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Collen D, Stump DC, Gold HK (1988) Thrombolytic therapy. Annu Rev Med 39:405–423

    PubMed  CAS  Google Scholar 

  2. Bick RL (1985) Thrombolytic therapy. In: Bick RL (ed) Disorders of homeostasis and thrombosis, principles of clinical practice. Thieme Inc., New York

    Google Scholar 

  3. Collen D, Lijnen JR (1986) The fibrinolytic system in man. Crit Rev Hemat Oncol 4:249–301

    CAS  Google Scholar 

  4. Castellino FJ (1981) Recent advances in the chemistry of the fibrinolytic system. Chem Rev 81:431– 446

    CAS  Google Scholar 

  5. Collen D (1990) Coronary thrombolysis: streptokinase or recombinant tissue-type plasminogen activator? Ann Intern Med 112:529–538

    PubMed  CAS  Google Scholar 

  6. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group (1992) The Lancet 339:753

  7. Marder VJ (1993) Recombinant streptokinase—opportunity for an improved agent. Blood Coagul Fibrinolysis 4:1039–1040

    PubMed  CAS  Google Scholar 

  8. Paoletti R, Sherry S (eds) (1977) Proceedings of the serono symposia. Thrombosis and Urokinase, vol. 9. Academic Publisher, London: p 257

  9. Bick RL (1992) Disorders of thrombosis and hemostasis; Clinical and Laboratory Practice. ASCP Press, USA

    Google Scholar 

  10. Wu KK, Thiagarajan P (1996) Role of endothelium in thrombosis and hemostasis. Annu Rev Med 47:315–331

    PubMed  CAS  Google Scholar 

  11. Bick RL (1982) Clinical relevance of anti-thrombin-III. Semin Thromb Hemost 8:276–287

    PubMed  CAS  Google Scholar 

  12. Castellino FJ (1984) Biochemistry of human-plasminogen. Semin Thromb Hemost 10:18–23

    PubMed  CAS  Google Scholar 

  13. Francis CW, Marder VJ (1994) Physiological regulation and pathologic disorders of fibrinolysis. In: Colman RW, Hirsh J, Marder VJ, Edwin W, Salzman B (eds) Hemostasis and thrombosis. J.B. Lippincott Company, Philadelphia, pp 1076–1103

    Google Scholar 

  14. Summaria L, Robbins KL (1976) Isolation of human plasmid-derived functionally active light (B) chain capable of forming with streptokinase an equimolar light (B) chain-streptokinase complex with plasminogen activator activity. J Biol Chem 251:5810–5813

    PubMed  CAS  Google Scholar 

  15. Violand BN, Castellino FJ (1976) Mechanism of the urokinase-catalyzed activation of human plasminogen. J Biol Chem 251:3906–3912

    PubMed  CAS  Google Scholar 

  16. Wallen P, Wiman B (1972) Characterization of human plasminogen. II. Separation and partial characterization of different molecular forms of human plasminogen. Biochem Biophys Acta 257:122–134

    PubMed  CAS  Google Scholar 

  17. Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE, Magnusson S (1972) Progress in chemical fibrinolysis and thrombolysis, vol. 3. Raven Press, New York, pp 191–209

  18. Pizzo SV, Schwartz ML Hill RL, McKee PA (1972) The effect of plasmin on the subunit structure of human fibrinogen. J Biol Chem 247:636–645

    PubMed  CAS  Google Scholar 

  19. Blomback B, Hessel B, Iwanaga S, Reuterby J, Blomback M (1972) Primary structure of human fibrinogen and fibrin. I. Cleavage of fibrinogen with cyanogen bromide. isolation and characterization of nh2-terminal fragments of the α (“A”)chain. J Biol Chem 247:1496–1512

    PubMed  CAS  Google Scholar 

  20. Bachmann F (1987) Fibrinolysis. In: Verstaete M, Vermylen J, Lijnen R, Arnout J (eds) Thrombosis and haemostasis, Leuven Univ. Press, Leuven, Belgium, pp 227–235

    Google Scholar 

  21. Collen D (1987) Molecular mechanisms of fibrinolysis and their application to fibrin-specific thrombolytic therapy. J Cell Biochem 33:77–86

    PubMed  CAS  Google Scholar 

  22. Akoi N, Harpel PC (1984) Inhibitors of the fibrinolytic enzyme system. Semin Thromb Hemost 10:24–41

    Google Scholar 

  23. Kruithof EKO, Tran-Thang C, Ransijn A, Bachmann F (1984) Demonstration of a fast acting inhibitor of plasminogen activators in human plasma. Blood 64:907–913

    PubMed  CAS  Google Scholar 

  24. Wiman B, Collen D (1978) On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem 84:573–578

    PubMed  CAS  Google Scholar 

  25. Holmes WE, Pennica D, Blaber M, Rey MW, Guenzler WA, Steffens GJ, Heyneker HL (1985) Cloning and expression of the gene for pro-urokinase in Escherichia coli. Biotechnol 3:923–929

    CAS  Google Scholar 

  26. Wiman B, Collen D (1977) Purification and characterization of human antiplasmin, the fast-acting plasmin inhibitor in plasma. Eur J Biochem 78:19–26

    PubMed  CAS  Google Scholar 

  27. Wiman B (1980) On the reaction of plasmin or plasmin streptokinase complex with aprotinin or alpha-2-antitrypsin. Thromb Res 17:143–152

    PubMed  CAS  Google Scholar 

  28. Harpel PC (1973) Studies on human plasma α2-macroglobulin-enzyme interactions: evidence for proteolytic modification of the subunit chain structure. J Exp Med 138:508–521

    PubMed  CAS  Google Scholar 

  29. Harpel PC (1981) Alpha2-plasmin inhibitor and alpha2-macroglobulin–plasmin complexes in plasma. Quantitation by an enzyme-linked differential antibody immunosorbent assay. J Clin Invest 68:46–55

    PubMed  CAS  Google Scholar 

  30. Rajagopalan S, Gonias SL, Pizzo SV (1985) A non-antigenic covalent streptokinase polyethylene glycol complex with plasminogen activator function. J Clin Invest 75:413–419

    Article  PubMed  CAS  Google Scholar 

  31. Lack CH (1948) Staphylokinase: an activator of plasma protease. Nature 161:559–560

    CAS  PubMed  Google Scholar 

  32. Collen D, DeCock F, Vanlinthout I, Declerck PJ, Lijnen HR, Stassen JM (1992) Comparative thrombolytic and immunogenic properties of staphylokinase and streptokinase. Fibrinolysis 6:232–242

    CAS  Google Scholar 

  33. Schlott B, Hartmann M, Guhrs KH, Birch-Hirschfeid E, Pohl HD, Vandescheure S, Van De Werf F, Michael A, Collen D, Behnke D (1994) High yield production and purification of recombinant staphylokinase for thrombolytic therapy. Biotechnol 12:185

    CAS  Google Scholar 

  34. Okada K, Ueshima S, Fukao H, Matsuo O (2001) Analysis of complex formation between plasmin(ogen) and staphylokinase or streptokinase. Arch Biochem Biophys 393:339–341

    PubMed  CAS  Google Scholar 

  35. Smith RA, Dupe RJ, English PD, Green J (1981) Fibrinolysis with acyl-enzymes: a new approach to thrombolytic therapy. Nat 290:505–508

    CAS  Google Scholar 

  36. Schluenring WD, Alagan A, Boidol W, Bringmann P, Petri T, Kratzschmar J, Haendler B, Langer G, Baldus B, Witt W, Donnar P (1992) Plasminogen activators from the saliva of Desmodus rotundus (common vampire bat): unique fibrin specificity. Annals NY Acad Sci 667:395–403

    Google Scholar 

  37. Matsuo O, Okada K, Fukao H, Tomioka Y, Ueshima S, Watanuki M, Sakai M (1990) Thrombolytic properties of staphylokinase. Blood 76:925–929

    PubMed  CAS  Google Scholar 

  38. Lijnen HR, Vanhoef B, DeCock F, Okada K, Ueshima S, Matsuo O, Collen D (1991) On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem 266:11826–11832

    PubMed  CAS  Google Scholar 

  39. Sako T (1985) Overproduction of staphylokinase in Escherichia coli and its characterization. Eur J Biochem 149:557–563

    PubMed  CAS  Google Scholar 

  40. Behnke D, Gerlach D (1987) Cloning and expression in Escherichia coli, Bacillus subtilis, and Streptococcus sanguis of a gene for staphylokinase, a bacterial plasminogen activator. Mol Gen Genet 210:528–534

    PubMed  CAS  Google Scholar 

  41. Nicolini FA, Nichols WW, Mehta JL, Saldeen TGP, Schofield R, Ross M, Player DW, Pohl GB, Mattsson C (1992) Sustained reflow in dogs with coronary thrombosis with K2P, a novel mutant of tissue plasminogen activator. J Am Coll Cardiol. 20:228–235

    PubMed  CAS  Google Scholar 

  42. Adams DS, Griffin LA, Nachajko WR, Reddy VB, Wei CM (1991) A synthetic DNA encoding a modified human urokinase resistant to inhibition by serum plasminogen activator inhibitor. J Biol Chem 266:8476–8482

    PubMed  CAS  Google Scholar 

  43. Wu XC, Ye RQ, Duan YJ, Wong S-L (1998) Engineering of plasmin-resistant forms of streptokinase and their production in Bacillus subtilis: streptokinase with longer functional half-life. Appl Environ Microbiol 64:824–829

    PubMed  CAS  Google Scholar 

  44. Banerjee A, Chisti Y, Banerjee UC (2004) Streptokinase—a clinically useful thrombolytic agent. Biotechnol Adv 22:287–307

    PubMed  CAS  Google Scholar 

  45. Christensen LR (1945) Streptococcal fibrinolysis: a proteolytic reaction due to serum enzyme activated by streptococcal fibrinolysin. J Gen Physiol 28:363–383

    CAS  PubMed  Google Scholar 

  46. McClintock DK, Bell PH (1971) The mechanism of activation of human plasminogen by streptokinase. Biochem Biophys Res Commun 43:694–702

    PubMed  CAS  Google Scholar 

  47. Summaria L, Arzadon L, Bernabe P, Robbins KC (1974) The interaction of streptokinase with human, cat, dog, and rabbit plasminogens. The fragmentation of streptokinase in the equimolar plasminogen–streptokinase complexes. J Biol Chem 249:4760–4769

    PubMed  CAS  Google Scholar 

  48. Hummel BCW, Schor JM, Buck FF, Boggiano E, DeRenzo EC (1965) Quantitative enzymic assay of human plasminogen and plasmin with azocasein as substrate. Anal Biochem 11:532–547

    CAS  Google Scholar 

  49. Reddy KNN, Markus G (1972) Mechanism of activation of human plasminogen by streptokinase presence of active center in streptokinase–plasminogen complex. J Biol Chem 247:1683–1691

    PubMed  CAS  Google Scholar 

  50. Schick LA, Castellino FJ (1973) Interaction of streptokinase and rabbit plasminogen. Biochemistry 12:4315–4321

    PubMed  Google Scholar 

  51. Kosow DP (1975) Kinetic mechanism of the activation of human plasminogen by streptokinase. Biochemistry 14:4459–4465

    PubMed  CAS  Google Scholar 

  52. Bajaj AP, Castellano FJ (1977) Activation of human plasminogen by equimolar levels of streptokinase. J Biol Chem 252:492–498

    PubMed  CAS  Google Scholar 

  53. Brockway WJ, Castellino FJ (1974) A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry 13:2063–2070

    PubMed  CAS  Google Scholar 

  54. Markus G, Werkheiser WC (1964) The interaction of streptokinase with plasminogen. i. functional properties of the activated enzyme. J Biol Chem 239:2637–2643

    PubMed  CAS  Google Scholar 

  55. Wulf RJ, Mertz ET (1969) Studies on plasminogen. Species specificity of streptokinase. Can J Biochem 47:927–931

    Article  PubMed  CAS  Google Scholar 

  56. McKee RJ, Hargrove CK, Smith AG, Mes H, Thompson A (1971) Precise calibration of a Ge(Li)-spectrometer using a digital to analog converter. Nuclear Instr Meth 92:421–432

    CAS  Google Scholar 

  57. Sodetz JM, Brockway WJ, Castellino FJ (1972) Multiplicity of rabbit plasminogen. Physical characterization. Biochemistry 11:4451–4458

    PubMed  CAS  Google Scholar 

  58. Camiolo SM, Thorsen S, Astrup T (1971) Fibrinogenolysis and fibrinolysis with tissue plasminogen activator, urokinase, streptokinase-activated human globulin, and plasmin. Proc Soc Exp Biol Med 138:277–280

    PubMed  CAS  Google Scholar 

  59. Takada A, Ito T, Takada Y (1980) Interaction of plasmin with tranexamic acid and alpha 2 plasmin inhibitor in the plasma and clot. Thromb Haemost 43:20–23

    PubMed  CAS  Google Scholar 

  60. Violand BN, Byrne R, Castellino FJ (1978) The effect of alpha-, omega-amino acids on human plasminogen structure and activation. J Biol Chem 253:5395–5401

    PubMed  CAS  Google Scholar 

  61. Kim DM, Lee SJ, Kim IC, Kim ST, Byun SM (2000) Asp41–His48 region of streptokinase is important in binding to a substrate plasminogen. Thromb Res 99:93–98

    PubMed  CAS  Google Scholar 

  62. Kim IC, Kim JS, Lee SH, Byun SM (1996) C-terminal peptide of streptokinase, Met369–Pro373, is important in plasminogen activation. Biotechnol Mol Biol Int 40:939–945

    CAS  Google Scholar 

  63. Kim DM, Lee SJ, Yoon SK, Byun SM (2002) Specificity role of the streptokinase C-terminal domain in plasminogen activation. Biochem Biophys Res Commun 290:585–588

    PubMed  CAS  Google Scholar 

  64. Zhai P, Wakeham N, Loy JA, Zhang XC (2003) Functional roles of streptokinase C-terminal flexible peptide in active site formation and substrate recognition in plasminogen activation. Biochemistry 42:114–120

    PubMed  CAS  Google Scholar 

  65. Wakeham N, Terzyan S, Zhai PZ, Loy JA, Tang J, Zhang XC (2002) Effects of deletion of streptokinase residues 48–59 on plasminogen activation. Protein Eng 15:753–761

    PubMed  CAS  Google Scholar 

  66. Wu DH, Shi GY, Chuang WJ, Hsu JM, Young KC, Chang CW, Wu HL (2001) Coiled coil region of streptokinase gamma-domain is essential for plasminogen activation. J Biol Chem 276:15025–15033

    PubMed  CAS  Google Scholar 

  67. Sazonova IY, Houng AK, Chowdhry SA, Reed GL (2000) Mechanism of action of a novel Streptococcus uberis plasminogen activator (SUPA). Circulation 102:489

    Google Scholar 

  68. Boxrud PD, Bock PE (2000) Streptokinase binds preferentially to the extended conformation of plasminogen through lysine binding site and catalytic domain interactions. Biochemistry 39:13974–13981

    PubMed  CAS  Google Scholar 

  69. Boxrud PD, Verhamme IMA, Fay WP, Bock PE (2001) Streptokinase triggers conformational activation of plasminogen through specific interactions of the amino-terminal sequence and stabilizes the active zymogen conformation. J Biol Chem 276:26084–26089

    PubMed  CAS  Google Scholar 

  70. Sundram V, Nanda JS, Rajagopal K, Dhar J, Chaudhary A, Sahni G (2003) Domain truncation studies reveal that the streptokinase–plasmin activator complex utilizes long range protein–protein interactions with macromolecular substrate to maximize catalytic turnover. J Biol Chem 278:30569–30577

    PubMed  CAS  Google Scholar 

  71. Shi GY, Chang BI, Chen SM, Wu DH, Wu HL (1994) Function of streptokinase fragments in plasminogen activation. Biochem J 304:235–241

    PubMed  CAS  Google Scholar 

  72. Young KC, Shi GY, Chang YF, Chang BI, Chang LC, Lai MD, Chuang WJ, Wu HL (1995) Interaction of streptokinase and plasminogen—studied with truncated streptokinase peptides. J Biol Chem 270:29601–29606

    PubMed  CAS  Google Scholar 

  73. McCoy HE, Broder CC, Lottenberg R (1991) Streptokinases produced by pathogenic group C Streptococci demonstrate species-specific plasminogen activation. J Infect Dis 164:515–521

    PubMed  CAS  Google Scholar 

  74. De Renzo EC, Siiteri PK, Hutchings BL, Bell PH (1967) Preparation and certain properties of highly purified streptokinase. J Biol Chem 242:533–542

    PubMed  Google Scholar 

  75. Taylor FB, Botts J (1968) Purification and characterization of streptokinase with studies of streptokinase activation of plasminogen. Biochemistry 7:232–242

    PubMed  CAS  Google Scholar 

  76. Jackson KW, Tang J (1982) Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21:6620–6625

    PubMed  CAS  Google Scholar 

  77. Malke H, Roe B, Ferretti J (1985) Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 34:357–362

    PubMed  CAS  Google Scholar 

  78. Huang TT, Malke H, Ferretti JJ (1989) Heterogeneity of the streptokinase gene in group A Streptococci. Infect Immun 57:502–506

    PubMed  CAS  Google Scholar 

  79. Malke H (1993) Polymorphism of the streptokinase gene—implications for the pathogenesis of poststreptococcal lomerulonephritis. Zentralbl Bakteriol 278:246–257

    PubMed  CAS  Google Scholar 

  80. Radek JT, Castellino FJ (1989) Conformational properties of streptokinase. J Biol Chem 264:9915–9922

    PubMed  CAS  Google Scholar 

  81. Fabian H, Naumann D, Misselwitz R, Ristau O, Gerlach D, Welfle H (1992) Secondary structure of streptokinase in aqueous solution—a Fourier transform infrared spectroscopic study. Biochemistry 31:6532–6538

    PubMed  CAS  Google Scholar 

  82. Misselwitz R Kraft R, Kostka S, Fabian H, Welfle K, Pfeil W, Welfle H, Gerlach D (1992) Limited proteolysis of streptokinase and properties of some fragments. Int J Biol Macromol 14:107–116

    Google Scholar 

  83. Welfle K, Pfeil W, Misselwitz R, Welfle H, Gerlach D (1992) Conformational properties of streptokinase—differential scanning calorimetric investigations. Int J Biol Macromol 14:19–22

    PubMed  CAS  Google Scholar 

  84. Teuten AJ, Broadhurst RW, Smith RAG, Dobson CM (1993) Characterization of structural and folding properties of streptokinase by NMR-spectroscopy. Biochem J 290:313–319

    PubMed  CAS  Google Scholar 

  85. Conejero-Lara K, Parrado J, Azuaya AI, Smith RAG, Ponting CP, Dobson CM (1996) Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance. Protein Sci 5:2583–2591

    Article  PubMed  CAS  Google Scholar 

  86. Parrado J, ConejeroLara F, Smith RAG, Marshall JM, Ponting CP, Dobson C (1996) The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci 5:693–704

    Article  PubMed  CAS  Google Scholar 

  87. Beldarrain A, Lopez-Lacomba JL, Kutyshenko VP, Serrano R, Cortijo M (2001) Multidomain structure of a recombinant streptokinase. A differential scanning calorimetry study. J Protein Chem 20:9–17

    PubMed  CAS  Google Scholar 

  88. Markus G, Evers JL, Hobika GH (1976) Activator activities of the transient forms of the human plasminogen·streptokinase complex during its proteolytic conversion to the stable activator complex. J Biol Chem 251:6495–504

    PubMed  CAS  Google Scholar 

  89. Siefring GE, Castellino FJ (1976) Interaction of streptokinase with plasminogen: isolation and characterization of a streptokinase degradation product. J Biol Chem 251:3913–3920

    PubMed  CAS  Google Scholar 

  90. Rodriguez P, Fuentes D, Munoz E, Rivero D, Orta D, Alburquerque S (1994) The streptokinase domain responsible for plasminogen binding. Fibrinolysis 8:276–285

    CAS  Google Scholar 

  91. Reed GL, Lin LF, Parhami-Seren B, Kussie P (1995) Identification of a plasminogen binding region in streptokinase that is necessary of the creation a functional streptokinase–plasminogen activator complex. Biochemistry 34:10266–10271

    PubMed  CAS  Google Scholar 

  92. Nihalani D, Kumar R, Rajagopal K, Sahni G (1998) Role of the amino-terminal region of streptokinase in the generation of a fully functional plasminogen activator complex probed with synthetic peptides. Protein Sci 7:637–648

    Article  PubMed  CAS  Google Scholar 

  93. Wang X, Lin X, Loy JA, Tang J, Zhang XC (1998) Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281:1662–1665

    PubMed  CAS  Google Scholar 

  94. Lizano S, Johnston KH (2005) Structural diversity of streptokinase and activation of human plasminogen. Infect Immun 73:4451–4453

    PubMed  CAS  Google Scholar 

  95. Azuaga AI, Dobson CM, Mateo PL, Conejero-Lara F (2002) Unfolding and aggregation during the thermal denaturation of streptokinase. Eur J Biochem 269:4121–4133

    PubMed  CAS  Google Scholar 

  96. Nihalani D, Sahni G (1995) Streptokinase contains two independent plasminogen-binding sites. Biochem Biophys Res Commun 217:1245–1254

    PubMed  CAS  Google Scholar 

  97. Young KC, Shi GY, Wu DH, Chang LC, Chang BI, Ou CP, Wu HL (1998) Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem 273:3110–3116

    PubMed  CAS  Google Scholar 

  98. Reed GL, Liu L, Houng AK, Matsueda LH, Lizbeth H (1998) Mechanisms of fibrin independent and fibrin dependent plasminogen activation by streptokinase. Circulation 98:199

    Google Scholar 

  99. Robinson BR, Liu L, Houng AK, Sazanova IY, Reed GL (2000) The streptokinase beta domain plays a critical role in activator complex formation and substrate docking. Circulation 102:490

    Google Scholar 

  100. Sazonova IY, Robinson BR, Gladysheva IP, Castellino FJ, Reed GL (2004) α-Domain deletion converts streptokinase into a fibrin-dependent plasminogen activator through mechanisms akin to staphylokinase and tissue plasminogen activator. J Biol Chem 279:24994–25001

    PubMed  CAS  Google Scholar 

  101. Boxrud PD, Bock PE (2004) Conformational and proteolytic activation in the kinetic mechanism of plasminogen activation by streptokinase. J Biol Chem 279:36642–36649

    PubMed  CAS  Google Scholar 

  102. Tillett WS, Garner RL (1933) Fibrinolytic activity of hemolytic streptococci. J Exp Med 58:485–502

    CAS  PubMed  Google Scholar 

  103. Ojalvo AG, Pozo L, Labarta V, Torrens I (1999a) Prevalence of circulating antibodies against a streptokinase C-terminal peptide in normal blood donors. Biochem Biophys Res Commun 263:454–459

    CAS  Google Scholar 

  104. Kazmi KA, Iqbal MP, Rahbar A, Mehboobali N (2002) Anti-streptokinase titers and response to streptokinase treatment in Pakistani patients. Int J Cardiol 82:247–251

    PubMed  Google Scholar 

  105. Regnault V, Helft G, Wahl D, Czitrom D, Vuillemenot A, Papouin G, Roda L, Danchin N, Lecompte T (2003) Anti streptokinase platelet-activating antibodies are common and heterogeneous. J Thromb Hemost 1:1055–1061

    CAS  Google Scholar 

  106. Ojalvo AG, Torrens I, Seralena A, de la Fuente J (1999) Recombinant streptokinase with reduced immunoreactivity. Thromb Hemost 77:815–817

    Google Scholar 

  107. Torrens I, Ojalvo AG, Seralena A, de la Fuente J (1999a) Study of antigenic regions of streptokinase. Thromb Hemost 2288, Suppl. S

  108. Torrens I, Ojalvo AG, Seralena A, Hayes O, de la Fuente J (1999b) A mutant streptokinase lacking the C-terminal 42 amino acids is less immunogenic. Immunol Lett 70:213–218

    CAS  Google Scholar 

  109. Coffey JA, Jennings KR, Dalton H (2001) New antigenic regions of streptokinase are identified by affinity-directed mass spectrometry. Eur J Biochem 268:5215–5221

    PubMed  CAS  Google Scholar 

  110. Reed GL, Kussie P, Parhamiseren B (1993) A functional analysis of the antigenicity of streptokinase using monoclonal antibody mapping and recombinant streptokinase fragments. J Immunol 150:4407–4415

    PubMed  CAS  Google Scholar 

  111. Koide A, Suzuki S, Kobayashi S (1982) Preparation of polyethylene glycol-modified streptokinase with disappearance of binding ability towards antiserum and retention of activity. FEBS Lett 143:73–76

    PubMed  CAS  Google Scholar 

  112. Pautov VD, Anufrieva EV, Ananeva TD, Saveleva NV, Taratina TM, Krakovyak MG (1990) Structural dynamic and functional properties of native and modified streptokinase. Mol Biol 24:35–41

    Google Scholar 

  113. Bean RR, Verhamme IM, Bock PE (2005) Role of the streptokinase α-domain in the interactions of streptokinase with plasminogen and plasmin. J Biol Chem 280:7504–7510

    PubMed  CAS  Google Scholar 

  114. Galler LI (2000) Streptokinase derivatives with high affinity for activated platelets and methods of their production and use in thrombolytic therapy. US patent 6087332

  115. Schotmuller H (1903) Die Artunterscheidung der fur den Menschen pathogenen Streptokokken durch Blutagar. Muench Med Wochenschr 1:849–909

    Google Scholar 

  116. Lancefield RC (1933) A serological differentiation of human and other groups of hemolytic Streptococci. J Exp Med 57:571–595

    PubMed  CAS  Google Scholar 

  117. Feldman LJ (1974) Streptokinase manufacture. In German. German patent DE 2354019

  118. Hagenson MJ, Holden KA, Parker KA, Wood PJ, Cruze JA, Fuke M (1989) Expression of streptokinase in Pichia pastoris yeast. Enzyme Microb Technol 11:650–656

    CAS  Google Scholar 

  119. Wong SL, Ye RQ, Nathoo S (1994) Engineering and production of streptokinase in Bacillus subtilis expression–secretion system. Appl Environ Microbiol 60:517–523

    PubMed  CAS  Google Scholar 

  120. Malke H, Ferretti JJ (1984) Streptokinase: cloning, expression and excretion by Escherichia coli. Proc Natl Acad Sci 81:3557–3561

    PubMed  CAS  Google Scholar 

  121. Kapur V, Li LL, Hamrick MR, Plikaytis BB, Shinnick TM, Telenti A, Jacobs WR, Banerjee A, Cole S, Yuen KY, Clarridge III JE, Kreiswirth BN, Musser JM (1995) Rapid mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 119:131–138

    PubMed  CAS  Google Scholar 

  122. Malke H, Gerlach D, Kohler W, Ferretti JJ (1984) Expression of a streptokinase gene from Streptococcus equisimilis in Streptococcus sanguis. Mol Gen Genet 196:360–363

    PubMed  CAS  Google Scholar 

  123. Muller J, Reinert H, Malke H (1989) Streptokinase mutations relieving Escherichia coli K-12 (PRLA4) of detriments caused by the wild-type skc gene. J Bacteriol 171:2202–2208

    PubMed  CAS  Google Scholar 

  124. Estrada MP, Hernandez L, Perez A, Rodríguez P, Serrano R, Rubier AR (1992) High-level expression of streptokinase in Escherichia coli. Biotechnology 10:1138–1142

    PubMed  CAS  Google Scholar 

  125. Muller J, Malke H (1990) Duplication of the streptokinase gene in the chromosome of Streptococcus equisimilis H46A. FEMS Microbiol Lett 72:75–78

    Google Scholar 

  126. Ko JH, Park DK, Kim IC, Lee SH, Byun SM (1995) High-level expression and secretion of streptokinase in Escherichia coli. Biotechnol Lett 17:1019–1024

    CAS  Google Scholar 

  127. Pratap J, Rajamohan G, Dikshit KL (2000) Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol 53:469–475

    PubMed  CAS  Google Scholar 

  128. Bernheimer AW, Gillman W, Hottle GA, Pappenheimer AM (1942) An improved medium for the cultivation of hemolytic streptococcus. J Bacteriol 43:495–498

    PubMed  CAS  Google Scholar 

  129. Rosenberger RF, Elsden SR (1960) The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol 22:726–739

    PubMed  CAS  Google Scholar 

  130. Von Polnitz W, Sehwick HG, Bickhard JH (1962) (to Behringwerke. 31) SocietA Farmaceutici Italia, Indian Patent 73099, 22

  131. Davies HC, Karush F, Rudd JH (1965) Effect of amino acids on steady-state growth of a group A hemolytic streptococcus. J Bacteriol 89:421–427

    PubMed  CAS  Google Scholar 

  132. Holmström B (1968) Production of Streptokinase in Continuous Culture. Appl Microbiol 16:73–77

    PubMed  Google Scholar 

  133. Baewald G, Mayer G, Heikel R, Volzke KD, Roehlig R, Decker KL, Koehler W, Gerlach D (1975) Fermentative production of Streptococcus metabolites, especially streptokinase. German patent DD 111096

  134. Van de Rijn I, Kessler RE (1980) Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun 27:444–448

    PubMed  Google Scholar 

  135. Ozegowski JH, Gerlach D, Kohler W (1983) Influence of physical parameters on the production of streptococcal extracellular proteins in cultures with stabilized pH: 2. Temperature dependence of extracellular protein production. Zentralbl Bakteriol Microbiol Hyg 254:361–369

    CAS  Google Scholar 

  136. Suh H, Kim KH, Kim SS, Han MH (1984) Culture conditions of Streptococcus sp. for streptokinase production. Sanop Misaengmul Hakhoechi 12:224–231

    Google Scholar 

  137. Nemirovich-Danchenko MM, Alekseeva VN, Lebedeva VV, Shashkova NM, Feigel’man BI, Burovaya FI, Smirnova EM (1985) Streptokinase. In Russian. USSR patent SU 1147749

  138. Narciandi RE, Morbe FJ, Riesenberg D (1996) Maximizing the expression of recombinant kringle 1 (Streptokinase) synthesized in Escherichia coli. Influence of culture and induction conditions. Biotechnol Lett 18:1261–1266

    CAS  Google Scholar 

  139. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY

    Google Scholar 

  140. Lee SH, Jeong ST, Kim IC, Byun SM (1997) Identification of the functional importance of valine-19 residue in streptokinase by N-terminal deletion and site directed mutagenesis. Biochem Mol Biol Int 41:199–207

    PubMed  CAS  Google Scholar 

  141. Mundada LV, Prorok M, DeFord ME, Figuera M, Castellino FJ, Fay WP (2003) Structure–function analysis of the streptokinase amino terminus (residues 1–59). J Biol Chem 278:24421–24427

    PubMed  CAS  Google Scholar 

  142. Yazdani SS, Mukherjee KJ (1998) Overexpression of streptokinase using a fed-batch strategy. Biotechnol Lett 20:923–927

    CAS  Google Scholar 

  143. Yazdani SS, Mukherjee KJ (2002) Continuous culture studies on the stability and expression of recombinant streptokinase in Escherichia coli. Bioprocess Biosyst Eng 24:341–346

    CAS  Google Scholar 

  144. Patnaik PR (2000) Principal component analysis for minimal model identification of a noise-affected fermentation: application to streptokinase. Biotechnol Lett 22:393

    CAS  Google Scholar 

  145. Malke H, Steiner K, Gase K, Frank C (2000) Expression and regulation of the streptokinase gene. Methods 21:111–124

    PubMed  CAS  Google Scholar 

  146. Chisti Y (1998) Biosafety. In: G Subramanian (ed) Bioseparation and bioprocessing: a handbook, vol. 2, Wiley-VCH, New York, pp 379–415

    Google Scholar 

  147. Pierard L, Bollen A (1990) Development of new thrombolytic agents using recombinant DNA technology. J Biotechnol 15:283–304

    PubMed  CAS  Google Scholar 

  148. Diwedi SK, Hiremath JS, Kerkar PG, Reddy Krishna N, Manjunath CN, Ramesh SS, Prabhavati S, Dhobe M, Singh Kavita, Bhusari P, Rao Raman (2005). Indigenous recombinant streptokinase Vs natural streptokinase in acute myocardial infarction patients: Phase III multicentric randomized double blind trial. Indian J Med Sci 59:200–207

    Google Scholar 

  149. Goa KL, Henwood JM, Langley MS, Clissold SP (1990). Intravenous streptokinase: a reappraisal of its therapeutic use in acute myocardial infarction. Drugs 39:693–719

    PubMed  CAS  Google Scholar 

  150. Gruppo Italiano per lo Studio della Soppravvivenza nell’ Infart miocardico (GISSI-2) (1992) A factorial randomized trial of alteplase vs. streptokinase and heparin versus no heparin among 12490 patients with acute myocardial infarction. Lancet 339:753–770

    Article  Google Scholar 

  151. The TREMA Group investigators (1999) Multicenter, randomized, comparative study of recombinant vs. natural streptokinase in acute myocardial infarction. Thrombo Hemostat 82:1605–1609

    Google Scholar 

  152. Honloser SH, Zabel M, Kasper W, Thomas M, Just H (1991) Assessment of coronary artery patency after thrombolytic therapy; accurate prediction utilising the combined analysis of three non-invasive markers. J Am Col Cardiol 18:44–49

    Article  Google Scholar 

  153. Boland A, Dundar Y, Bagust A, Haycox A, Hill R, Mujica MR et al (2003) Early thrombolysis for the treatment of acute myocardial infarction: A systematic review and economic evaluation. Health Technol Assess 7:1–136

    PubMed  CAS  Google Scholar 

  154. Dundar Y, Hill R, Dickson R, Walley T (2003) Comparative efficacy of thrombolytics in acute myocardial infarction: A systematic review. QJM 96:103–113

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Andhra University, Visakhapatnam, India and Council of Scientific & Industrial Research (CSIR), New Delhi, India, for providing financial support and awarding a senior research fellowship (Award No. 9/2 (454)/2k2, EMR.I) to Dr. Adinarayana Kunamneni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinarayana Kunamneni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunamneni, A., Abdelghani, T.T.A. & Ellaiah, P. Streptokinase—the drug of choice for thrombolytic therapy. J Thromb Thrombolysis 23, 9–23 (2007). https://doi.org/10.1007/s11239-006-9011-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-006-9011-x

Keywords

Navigation