Skip to main content

Chitosan for Tissue Engineering

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

Chitosan, a deacetylated chitin, is one of the few natural polymers similar to glycosaminoglycans (GAGs) widely distributed throughout connective tissues. It has been believed that the excellent biocompatibility of chitosan is largely attributed to this structural similarity. Chitosan is also known to possess biodegradability, antimicrobial activity and low toxicity and immunogenicity which are essential for scaffolds. In addition, the existence of free amine groups in its backbone chain enables further chemical modifications to create the additional biomedical functionality. For these reasons, chitosan has found a tremendous variety of biomedical applications in recent years. This chapter introduces the basic contents of chitosan and discusses its applications to artificial skin, artificial bone, and artificial cartilage in tissue engineering purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aiba S-I (1991) Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Inter J Biol Macromol 13(1):40–44. https://doi.org/10.1016/0141-8130(91)90008-I

    Article  CAS  Google Scholar 

  3. Alemdaroğlu C, Değim Z, Celebi N, Zor F, Oztürk S, Erdoğan D (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32(3):319–327. https://doi.org/10.1016/j.burns.2005.10.015

    Article  PubMed  Google Scholar 

  4. Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, Song YH, Alt EU (2009) IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 27(1):250–258. https://doi.org/10.1634/stemcells.2008-0178

    Article  CAS  PubMed  Google Scholar 

  5. Athanasiou KA, Shah AR, Hermandez RJ, LeBaron RG (2001) Basic science of articular cartilage repair. Clin Sports Med 20(2):223–247. https://doi.org/10.1016/S0278-5919(05)70304-5

    Article  CAS  PubMed  Google Scholar 

  6. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433. https://doi.org/10.1016/j.addr.2007.04.022

    Article  CAS  PubMed  Google Scholar 

  7. Bernhard P (2003) Tissue engineering. CRC Press, Boca Raton

    Google Scholar 

  8. Bowman S, Awad ME, Hamrick MW, Hunter M, Fulzele S (2018) Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin Transl Med 7:6. https://doi.org/10.1186/s40169-017-0180-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22(3):261–268. https://doi.org/10.1016/S0142-9612(00)00183-6

    Article  CAS  PubMed  Google Scholar 

  10. Chun HJ, Kim G-W, Kim C-H (2008) Fabrication of porous chitosan scaffold in order to improve biocompatibility. J Phys Chem Solids 69(5–6):1573–1576. https://doi.org/10.1016/j.jpcs.2007.10.104

    Article  CAS  Google Scholar 

  11. Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, Yao KD (2003) Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 24(21):3859–3868. https://doi.org/10.1016/S0142-9612(03)00209-6

    Article  CAS  PubMed  Google Scholar 

  12. Custódio CA, Alves CM, Reis RL, Mano JF (2010) Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. J Tissue Eng Regen Med 4(4):316–323. https://doi.org/10.1002/term.248

    Article  CAS  PubMed  Google Scholar 

  13. Cuy JL, Beckstead BL, Brown CD, Hoffman AS, Giachelli CM (2003) Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials. J Biomed Mater Res A 67(2):538–547. https://doi.org/10.1002/jbm.a.10095

    Article  CAS  PubMed  Google Scholar 

  14. de Vasconcelos CL, Bezerril PM, Pereira MR, Ginani MF, Fonseca JL (2011) Viscosity-temperature behavior of chitin solutions using lithium chloride/DMA as solvent. Carbohydr Res 346(5):614–618. https://doi.org/10.1016/j.carres.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  15. Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8(7):1038–1050. https://doi.org/10.1128/EC.00079-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellis CE, Ellis LK, Korbutt RS, Suuronen EJ, Korbutt GS (2015) Development and characterization of a collagen-based matrix for vascularization and cell delivery. BioRes Open Access 491:188–197. https://doi.org/10.1089/biores.2015.0007

    Article  CAS  Google Scholar 

  17. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol 147(2):227–235. https://doi.org/10.1111/j.1365-2249.2006.03261.x

    Article  Google Scholar 

  18. Freier T, Montenegro R, Shan Koh H, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26(22):4624–4632. https://doi.org/10.1016/j.biomaterials.2004.11.040

    Article  CAS  PubMed  Google Scholar 

  19. Ge Z, Baguenard S, Lim LY, Wee A, Khor E (2004) Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25(6):1049–1058. https://doi.org/10.1016/S0142-9612(03)00612-4

    Article  CAS  PubMed  Google Scholar 

  20. Hansson A, Hashom N, Falson F, Rousselle P, Jordan O, Borchard G (2012) In vitro evaluation of an RGD-functionalized chitosan derivative for enhanced cell adhesion. Carbohydr Polym 90(4):1494–1500. https://doi.org/10.1016/j.carbpol.2012.07.020

    Article  CAS  PubMed  Google Scholar 

  21. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulate cell adhesion and beyond. Biomaterials 24(24):4385–4415. https://doi.org/10.1016/S0142-9612(03)00343-0

    Article  CAS  PubMed  Google Scholar 

  22. Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT (2005) Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials 26(16):3197–3206. https://doi.org/10.1016/j.biomaterials.2004.08.032

    Article  CAS  PubMed  Google Scholar 

  23. Hudson SM, Smith C (1998) Polysaccharide: chitin and chitosan: chemistry and technology of their use as structural materials. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  24. Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 2012:983062. https://doi.org/10.5402/2012/983062

    Article  CAS  Google Scholar 

  25. Iwasaki N, Yamane S-T, Majima T, Kasahara Y, Minami A, Harada K, Nonaka S, Maekawa N, Tamura H, Tokura S, Shiono M, Monde K, Nishimura S-I (2004) Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared form alginate and chitosan. Biomacromolecules 5(3):828–833. https://doi.org/10.1021/bm0400067

    Article  CAS  PubMed  Google Scholar 

  26. Jeon IH, Mok JY, Park KH, Hwang HM, Song MS, Lee D, Lee MH, Chai KY, Jang SI (2012) Inhibitor effect of dibutyryl chitin ester on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 cells. Arch Pharm Res 35(7):1287–1292. https://doi.org/10.1007/s12272-012-0720-8

    Article  CAS  PubMed  Google Scholar 

  27. Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. K=J Biomater Tissue Eng 3(4):494–502. https://doi.org/10.1166/jbt.2013.1110

    Article  CAS  Google Scholar 

  28. Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92(2):568–576. https://doi.org/10.1002/jbm.b.31554

    Article  CAS  PubMed  Google Scholar 

  29. Khor E, Lm LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349. https://doi.org/10.1016/S0142-9612(03)00026-7

    Article  CAS  PubMed  Google Scholar 

  30. Kim CH, Choi JW, Chun HJ, Choi KS (1997) Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym Bull 38(4):387–393. https://doi.org/10.1007/s002890050064

    Article  CAS  Google Scholar 

  31. Kim CH, Park H-S, Gin YJ, Son Y, Lim S-H, Choi YJ, Park K-S, Park CW (2004) Improvement of the biocompatibility of chitosan dermal scaffold by rigorous dry heat treatment. Macromol Res 12(4):367–373. https://doi.org/10.1007/BF03218413

    Article  CAS  Google Scholar 

  32. Kim MS, Kim JH, Min BH, Chun HJ, Han DK, Lee HB (2011) Polymeric scaffolds for regenerative medicine. Polym Rev 51(1):23–52. https://doi.org/10.1080/15583724.2010.537800

    Article  CAS  Google Scholar 

  33. Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, Kwon IC (2003a) Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering. J Control Release 91(3):365–374. https://doi.org/10.1016/S0168-3659(03)00274-8

    Article  CAS  PubMed  Google Scholar 

  34. Kim SJ, Park SJ, Kim SI (2003b) Swelling behavior of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and chitosan. React Funct Polym 55(1):53–59. https://doi.org/10.1016/S1381-5148(02)00214-6

    Article  CAS  Google Scholar 

  35. Ko H-F, Sfeir C, Kumta PN (2010) Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philos Trans A Math Phys Eng Sci 368(1917):1981–1997. https://doi.org/10.1098/rsta.2010.0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kurita K, Sannan T, Iwakura Y (1977) Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolyses. Die Makromolekulare Chemie 178(12):3197–3202. https://doi.org/10.1002/macp.1977.021781203

    Article  CAS  Google Scholar 

  37. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) Chitosan supports the expression of exracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51(4):586–595. https://doi.org/10.1002/1097-4636(20000915)51:4<586::AID-JBM6>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  38. Lam J, Sequra T (2013) The modulation of MSC integrin expression by RGD presentation. Biomaterials 34(16):3938–3947. https://doi.org/10.1016/j.biomaterials.2013.01.091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, Kim HJ, Seong SC, LEE MC (2004) Effect of the controlled-released TGF- beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25(18):4163–4173. https://doi.org/10.1016/j.biomaterials.2003.10.057

    Article  CAS  PubMed  Google Scholar 

  40. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71(3):418–424. https://doi.org/10.1902/jop.2000.71.3.418

    Article  CAS  PubMed  Google Scholar 

  41. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. https://doi.org/10.1016/j.cell.2010.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu H, Fan H, Cui Y, Chen Y, Yao K, Goh JC (2007) Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold. Biomacromolecules 8(5):1446–1455. https://doi.org/10.1021/bm061025e

    Article  CAS  PubMed  Google Scholar 

  43. Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2(5):557–565. https://doi.org/10.1016/j.actbio.2006.03.007

    Article  PubMed  Google Scholar 

  44. Liu Y, Stewart KN, Bishop E, Marek CJ, Kluth DC, Rees AJ, Wilson HM (2008) Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J Immunol 180(9):6270–6278. https://doi.org/10.4049/jimmunol.180.9.6270

    Article  CAS  PubMed  Google Scholar 

  45. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26):4833–4841. https://doi.org/10.1016/S0142-9612(03)00374-0

    Article  CAS  PubMed  Google Scholar 

  46. Macedo L, Pinhal-Enfield G, Alshits V, Elson G, Cronstein BN, Leibovich SJ (2007) Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am J Pathol 171(6):1774–1788. https://doi.org/10.2353/ajpath.2007.061048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Madaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma 2:20040153. https://doi.org/10.4103/2321-3868.143616

    Article  Google Scholar 

  48. Madihally S, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142. https://doi.org/10.1016/S0142-9612(99)00011-3

    Article  CAS  PubMed  Google Scholar 

  49. Martínez A, Blanco MD, Davidenko N, Cameron RE (2015) Tailoring chitosan/collagen scaffolds for tissue engineering: effect of composition and different crosslinking agents on scaffold properties. Carbohydr Polym 132:606–619. https://doi.org/10.1016/j.carbpol.2015.06.084

    Article  CAS  PubMed  Google Scholar 

  50. Mattioli-Belmonte M, Gigante A, Muzzarelli RAA, Politano R, De Benedittis A, Specchia N, Buffa A, Biagini G, Greco F (1999) N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comput 37(1):130–134. https://doi.org/10.1007/BF02513279

    Article  CAS  PubMed  Google Scholar 

  51. Mhanna R, Hasan A (2017) 1. Introduction to tissue engineering. In: Hasan A (ed) Tissue engineering for artificial organs: regenerative medicine, smart diagnostics and personalized medicine. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  52. Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037. https://doi.org/10.1016/j.biocel.2003.12.003

    Article  CAS  PubMed  Google Scholar 

  53. Mochizuki M, Kadoya Y, Wakabayashi Y, Kato K, Okazaki I, Yamada M, Sato T, Sakairi N, Nishi N, Nomizu M (2003) Laminin-1 peptide-conjugated chitosan membranes as a novel approach for cell engineering. FASEB J 17(8):875–877. https://doi.org/10.1096/fj.02-0564fje

    Article  CAS  PubMed  Google Scholar 

  54. Nair MG, Cochrane DW, Allen JE (2003) Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of YM1 and Fizz1 that can be partly replicated in vitro. Immunol Lett 85(2):173–180. https://doi.org/10.1016/S0165-2478(02)00225-0

    Article  CAS  PubMed  Google Scholar 

  55. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  56. Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Hirofumi Y, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24(20):3437–3444. https://doi.org/10.1016/S0142-9612(03)00220-5

    Article  CAS  PubMed  Google Scholar 

  57. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137. https://doi.org/10.1016/j.biomaterials.2006.07.034

    Article  CAS  PubMed  Google Scholar 

  58. Ortega-Paz L, Brugaletta S, Sabaté M (2018) Impact of PSP technique on clinical outcomes following bioresorbable scaffolds implantation. J Clin Med 7(2):27. https://doi.org/10.3390/jcm7020027

    Article  PubMed Central  Google Scholar 

  59. Park DJ, Choi BH, Zhu SJ, Huh JY, Kim BY, Lee SH (2005) Injectable bone using chitosan-alginate gel/mesenchymal stem cells/BMP-2 composites. J Craniomaxillofac Surg 33(1):50–54. https://doi.org/10.1016/j.jcms.2004.05.011

    Article  PubMed  Google Scholar 

  60. Pogorielov M, Kalinkevich O, Deineka V, Garbuzova V, Solodovnik A, Kalinkevich A, Kalinichenoko T, Gapchenko A, Sklyar A, Danilchenko S (2015) Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness. Biomater Res 19:22. https://doi.org/10.1186/s40824-015-0044-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rabea EI, Mohamed ETB, Christian VS, Guy S, Walter S (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. https://doi.org/10.1012/bm034130m

    Article  CAS  PubMed  Google Scholar 

  62. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  Google Scholar 

  63. Ren D, Yi H, Wang W, Ma X (2005) The enzymatic degradation and swelling properties of chitosan matrices with different degree of N-acetylation. Carbohydr Res 340(15):2403–2410. https://doi.org/10.1016/j.carres.2005.07.022

    Article  CAS  PubMed  Google Scholar 

  64. Roberts GAF (1992) Derivatives of chitin and chitosan. In: Chitin chemistry. Palgrave, London. https://doi.org/10.1007/978-1-349-11545-7_4

    Chapter  Google Scholar 

  65. Roh H, Yang DH, Chun HJ, Khang G (2015) Cellular behavior of hepatocyte-like cells from nude mouse bone marrow-derived mesenchymal stem cells on galactosylated poly(D,L-lactic-co-glycolic acid). J Tissue Eng Regen Med 9(7):819–825. https://doi.org/10.1002/term.1771

    Article  CAS  PubMed  Google Scholar 

  66. Roy JC, Salaün F, Giraud S, Ferri A (2017) Solubility of chitin: solvents, solution behaviors and their related mechanisms. In: Xu Z (ed) Solubility of polysaccharides. InTechOpen. https://doi.org/10.5772/intechopen.71385

    Google Scholar 

  67. Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nurt Res 49:93–135. https://doi.org/10.1016/S1043-4526(05)

    Article  CAS  Google Scholar 

  68. Shen B, Delaney MK, Du X (2012) Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol 24(5):600–606. https://doi.org/10.1016/j.ceb.2012.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shin YM, Shin HJ, Yang DH, Koh YJ, Shin H, Chun HJ (2017) Advance capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. J Mater Chem B 5:8725–8737. https://doi.org/10.1039/C7TB01758H

    Article  CAS  PubMed  Google Scholar 

  70. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663. https://doi.org/10.1002/bit.22361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tiğli RS, Gümüşderelioğlu M (2008) Evaluation of RGD- or EGF-immobilized chitosan scaffolds for chondrogenic activity. Int J Biol Macromol 43(2):121–128. https://doi.org/10.1016/j.ijbiomac.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  72. van Tienen TG, Heijkants GJC, Buma P, de Groot JH, Pennings AJ, Veth RPH (2002) Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 23(8):1731–1738. https://doi.org/10.1016/S0142-9612(01)00280-0

    Article  PubMed  Google Scholar 

  73. Vårum KM, Myhr MM, Hjerde RJ, Smidsrød O (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299(1–2):99–101. https://doi.org/10.1016/S0008-6215(96)00332-1

    Article  PubMed  Google Scholar 

  74. Yang DH, Seo DI, Lee DW, Bhang SH, Park K, Jang G, Kim CH, Chun HJ (2017) Preparation and evaluation of visible-light cured glycol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing. J Ind Eng Chem 53:360–370. https://doi.org/10.1016/j.jiec.2017.05.007

    Article  CAS  Google Scholar 

  75. Yoon Y-M, Kim S-J, Oh C-D, Ju J-W, Song WK, Yoo YJ, Hun T-L, Chun J-S (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J Biol Chem 277:8412–8420. https://doi.org/10.1074/jbc.M110608200

    Article  CAS  PubMed  Google Scholar 

  76. Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118(31):9507–9514. https://doi.org/10.1021/jp506013c

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28(8):1515–1522. https://doi.org/10.1016/j.biomaterials.2016.11/040

    Article  CAS  PubMed  Google Scholar 

  78. Zhou JC, Zhang JJ, Zhang W, Ke ZY, Zhang B (2017) Efficacy of chitosan dressing on endoscopic sinus surgery: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 274(9):3269–3274. https://doi.org/10.1007/s00405-017-4584-x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Jae Chun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH., Park, S.J., Yang, D.H., Chun, H.J. (2018). Chitosan for Tissue Engineering. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_25

Download citation

Publish with us

Policies and ethics