Skip to main content

Abstract

α-Synuclein is an abundantly expressed protein located in the neuronal synapse which accumulates in Lewy body inclusions and synaptic aggregates in neurodegenerative diseases. Although evidence indicates that oligomeric α-synuclein can stimulate neurodegeneration, and α-synuclein amyloid fibrils can spread in a prion-like manner, the initial cause of α-synuclein dysregulation is uncertain. α-Synuclein released from the neuronal presynaptic terminal can accumulate in astrocytes early in disease progression and astrocyte dysfunction has been observed in the same disease phase. Astrocytes provide homeostatic balance to the brain parenchyma through release of neuroprotective factors and clearing of waste products to the vasculature, and astrocytic dysfunction has been shown to cause neuronal cell death. Like protein aggregation in other proteinopathies, such as neurofibrillary tangles and β-amyloid plaques, evidence is emerging that accumulation of abundantly expressed neuronal proteins could be a by-product of initial non-neuronal cellular degeneration. This review examines interactions between α-synuclein and astrocytes with a consideration of an astrocytic cause of synucleinopathy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, de Silva HA, Pettenati MJ, Rao PN, St George-Hyslop P, Roses AD, Xia Y, Horsburgh K, Uéda K, Saitoh T. The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis. Genomics. 1995;26:425–7.

    Article  CAS  PubMed  Google Scholar 

  2. Spillantini MG, Divane A, Goedert M. Assignment of human α-Synuclein (SNCA) and β-Synuclein (SNCB) genes to chromosomes 4q21 and 5q35. Genomics. 1995;27:379–81.

    Article  CAS  PubMed  Google Scholar 

  3. Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:11282–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8:2804–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, Rohan de Silva H, Kittel A, Saitoh T. The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron. 1995;14:467–75.

    Article  CAS  PubMed  Google Scholar 

  6. Ueda K, Saitoh T, Mori H. Tissue-dependent alternative splicing of mRNA for NACP, the precursor of non-Aβ component of alzheimer's disease amyloid. Biochem Biophys Res Commun. 1994;205:1366–72.

    Article  CAS  PubMed  Google Scholar 

  7. Maroteaux L, Scheller RH. The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Brain Res Mol Brain Res. 1991;11:335–43.

    Article  CAS  PubMed  Google Scholar 

  8. Spinelli KJ, Taylor JK, Osterberg VR, Churchill MJ, Pollock E, Moore C, Meshul CK, Unni VK. Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease. J Neurosci. 2014;34:2037–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 2010;33:559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. Binding of -synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem. 1998;273:26292–4.

    Article  CAS  PubMed  Google Scholar 

  11. Dettmer U, Newman AJ, von Saucken VE, Bartels T, Selkoe D. KTKEGV repeat motifs are key mediators of normal α-synuclein tetramerization: their mutation causes excess monomers and neurotoxicity. Proc Natl Acad Sci U S A. 2015;112:9596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodriguez JA, Ivanova MI, Sawaya MR, et al. Structure of the toxic core of α-synuclein from invisible crystals. Nature. 2015;525:486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin Z, Hu D, Han S, Hong D-P, Fink AL. Role of different regions of α-Synuclein in the assembly of fibrils. Biochemistry. 2007;46(46):13322–30. https://doi.org/10.1021/BI7014053.

    Article  CAS  PubMed  Google Scholar 

  14. Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG. Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem. 2003;278:44405–11.

    Article  CAS  PubMed  Google Scholar 

  15. Sato H, Arawaka S, Hara S, Fukushima S, Koga K, Koyama S, Kato T. Authentically phosphorylated alpha-synuclein at Ser129 accelerates neurodegeneration in a rat model of familial Parkinson’s disease. J Neurosci. 2011;31:16884–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato H, Kato T, Arawaka S. The role of Ser129 phosphorylation of alpha-synuclein in neurodegeneration of Parkinson’s disease: a review of in vivo models. Rev Neurosci. 2013;24:115–23.

    Article  CAS  PubMed  Google Scholar 

  17. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    Article  CAS  PubMed  Google Scholar 

  18. Ingelsson M. Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Front Neurosci. 2016;10:408.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi B-K, Choi M-G, Kim J-Y, Yang Y, Lai Y, Kweon D-H, Lee NK, Shin Y-K. Large-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc Natl Acad Sci U S A. 2013;110:4087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329:1663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burré J, Sharma M, Südhof TC. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci U S A. 2014;111:E4274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee H-J, Patel S, Lee S-J. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci. 2005;25:6016–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jang A, Lee H-J, Suk J-E, Jung J-W, Kim K-P, Lee S-J. Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem. 2010;113:1263–74.

    CAS  PubMed  Google Scholar 

  24. Rochet J-C, Outeiro TF, Conway KA, Ding TT, Volles MJ, Lashuel HA, Bieganski RM, Lindquist SL, Lansbury PT. Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson’s disease. J Mol Neurosci. 2004;23:23–34.

    Article  CAS  PubMed  Google Scholar 

  25. Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283:9089–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, Yang H, Uéda K, Chan P, Yu S. α-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett. 2009;454(3):187–92. https://doi.org/10.1016/j.neulet.2009.02.056.

    Article  CAS  PubMed  Google Scholar 

  28. Bender A, Schwarzkopf RM, McMillan A, Krishnan KJ, Rieder G, Neumann M, Elstner M, Turnbull DM, Klopstock T. Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol. 2008;255:1231–5.

    Article  PubMed  Google Scholar 

  29. Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38:515–7.

    Article  CAS  PubMed  Google Scholar 

  30. Schapira A, Cooper J, Dexter D, Jenner P, Marsden C. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989;1(8649):1269. https://doi.org/10.1016/S0140-6736(89)92366-0.

    Article  CAS  PubMed  Google Scholar 

  31. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008;7:97–109.

    Article  CAS  PubMed  Google Scholar 

  32. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci. 2011;31:14508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Machiya Y, Hara S, Arawaka S, Fukushima S, Sato H, Sakamoto M, Koyama S, Kato T. Phosphorylated alpha-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner. J Biol Chem. 2010;285:40732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305:1292–5.

    Article  CAS  PubMed  Google Scholar 

  35. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008;283:23542–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winslow AR, Chen C-W, Corrochano S, et al. alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190:1023–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci. 2010;30:12535–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science. 2015;349:1255555.

    Article  CAS  PubMed  Google Scholar 

  39. Goedert M, Masuda-Suzukake M, Falcon B. Like prions: the propagation of aggregated tau and alpha-synuclein in neurodegeneration. Brain. 2017;140(2):266–78. https://doi.org/10.1093/brain/aww230.

    Article  PubMed  Google Scholar 

  40. Li J-Y, Englund E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14:501–3.

    Article  CAS  PubMed  Google Scholar 

  41. Kordower JH, Dodiya HB, Kordower AM, Terpstra B, Paumier K, Madhavan L, Sortwell C, Steece-Collier K, Collier TJ. Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat. Neurobiol Dis. 2011;43:552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mougenot A-L, Nicot S, Bencsik A, Morignat E, Verchere J, Lakhdar L, Legastelois S, Baron T. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging. 2012;33:2225–8.

    Article  CAS  PubMed  Google Scholar 

  43. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM-Y. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 2012;209:975–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V. alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 2015;522:340–4.

    Article  CAS  PubMed  Google Scholar 

  46. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, Wang Z-Y, Roybon L, Melki R, Li J-Y. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014;128:805–20.

    Article  PubMed  Google Scholar 

  47. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7. https://doi.org/10.1126/science.276.5321.2045.

    Article  CAS  PubMed  Google Scholar 

  48. Sacino AN, Brooks M, Thomas MA, et al. Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci U S A. 2014;111:10732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sacino AN, Brooks M, Thomas MA, McKinney AB, McGarvey NH, Rutherford NJ, Ceballos-Diaz C, Robertson J, Golde TE, Giasson BI. Amyloidogenic alpha-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathol. 2014;127:645–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A. 2015;112:E5308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M. Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro. 2012;4(3):e00082. https://doi.org/10.1042/an20120010.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V. Pathobiology of neurodegeneration: the role for astroglia. Opera Med Physiol. 2016;1:13–22.

    PubMed  PubMed Central  Google Scholar 

  53. Eng LF, Ghirnikar RS. GFAP and astrogliosis. Brain Pathol. 1994;4:229–37.

    Article  CAS  PubMed  Google Scholar 

  54. Jellinger KA. Neuropathological spectrum of synucleinopathies. Mov Disord. 2003;18(Suppl 6):S2–12.

    Article  PubMed  Google Scholar 

  55. Koob AO, Paulino AD, Masliah E. GFAP reactivity, apolipoprotein E redistribution and cholesterol reduction in human astrocytes treated with alpha-synuclein. Neurosci Lett. 2010;469:11–4.

    Article  CAS  PubMed  Google Scholar 

  56. Braidy N, Gai W-P, Xu YH, et al. Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl Neurodegener. 2013;2:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vieira BDM, Radford RA, Chung RS, Guillemin GJ, Pountney DL. Neuroinflammation in multiple system atrophy: response to and cause of alpha-synuclein aggregation. Front Cell Neurosci. 2015;9:437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brück D, Wenning GK, Stefanova N, Fellner L. Glia and alpha-synuclein in neurodegeneration: a complex interaction. Neurobiol Dis. 2016;85:262–74.

    Article  CAS  PubMed  Google Scholar 

  59. Shults CW, Rockenstein E, Crews L, et al. Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci. 2005;25:10689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32:638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh S, Swarnkar S, Goswami P, Nath C. Astrocytes and microglia: responses to neuropathological conditions. Int J Neurosci. 2011;121:589–97.

    Article  PubMed  Google Scholar 

  62. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.

    Article  PubMed  Google Scholar 

  63. Mohn TC, Koob AO. Adult astrogenesis and the etiology of cortical neurodegeneration. J Exp Neurosci. 2015;9:25–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sofroniew MV. Astrogliosis. In: Barres BA, Freeman MR, Stevens B, editors. Glia. 1st ed. New York, NY: Cold Spring Harbor Laboratory Press; 2015. p. 107–22.

    Google Scholar 

  65. Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett. 2014;565:23–9.

    Article  CAS  PubMed  Google Scholar 

  66. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97:1634–58.

    Article  CAS  PubMed  Google Scholar 

  67. Angelova PR, Horrocks MH, Klenerman D, Gandhi S, Abramov AY, Shchepinov MS. Lipid peroxidation is essential for alpha-synuclein-induced cell death. J Neurochem. 2015;133:582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang F, Liu Y, Tu J, Wan J, Zhang J, Wu B, Chen S, Zhou J, Mu Y, Wang L. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nat Commun. 2014;5:5627.

    Article  PubMed  Google Scholar 

  69. Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N. Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia. 2013;61:349–60.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rannikko EH, Weber SS, Kahle PJ. Exogenous alpha-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci. 2015;16:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klegeris A, Giasson BI, Zhang H, Maguire J, Pelech S, McGeer PL. Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J. 2006;20:2000–8.

    Article  CAS  PubMed  Google Scholar 

  72. Lee H, Suk J, Patrick C, Bae E, Chio J, Rho S, Hwang D, Masliah E, Lee S. Direct transfer of alpha-synucelin from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285(12):9262–72. https://doi.org/10.1074/jbc.M109.081125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee H-J, Kim C, Lee S-J. Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxidative Med Cell Longev. 2010;3:283–7.

    Article  Google Scholar 

  74. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Malta C, Fryer JD, Settembre C, Ballabio A. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci U S A. 2012;109:E2334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem. 2005;280:22925–36.

    Article  CAS  PubMed  Google Scholar 

  77. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–15.

    Article  CAS  PubMed  Google Scholar 

  78. Han X, Chen M, Wang F, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell. 2013;12:342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Verkhratsky A, Nedergaard M. Astroglial cradle in the life of the synapse. Philos Trans R Soc L B Biol Sci. 2014;369:20130595.

    Article  CAS  Google Scholar 

  80. Haydon PG. Glia: listening and talking to the synapse. Nat Rev Neurosci. 2001;2:185–93.

    Article  CAS  PubMed  Google Scholar 

  81. Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005;120:421–33.

    Article  CAS  PubMed  Google Scholar 

  82. Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F, Cardona-Gomez GP, Barreto GE. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci. 2014;8:211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291:657–61.

    Article  CAS  PubMed  Google Scholar 

  84. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 2001;294:1354–7.

    Article  CAS  PubMed  Google Scholar 

  85. Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG. Astrocytic control of synaptic function. Philos Trans R Soc Lond Ser B Biol Sci. 2017;372(1715):20160154. https://doi.org/10.1098/rstb.2016.0154.

    Article  CAS  Google Scholar 

  86. Revuelta GJ, Rosso A, Lippa CF. Neuritic pathology as a correlate of synaptic loss in dementia with lewy bodies. Am J Alzheimers Dis Other Demen. 2008;23:97–102.

    Article  PubMed  Google Scholar 

  87. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.

    Article  CAS  PubMed  Google Scholar 

  88. Koob AO, Ubhi K, Paulsson JF, Kelly J, Rockenstein E, Mante M, Adame A, Masliah E. Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Exp Neurol. 2010;221:267–74.

    Article  CAS  PubMed  Google Scholar 

  89. L’Episcopo F, Tirolo C, Testa N, et al. Reactive astrocytes and Wnt/beta-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol Dis. 2011;41:508–27.

    Article  CAS  PubMed  Google Scholar 

  90. L’Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B. A Wnt1 regulated Frizzled-1/beta-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener. 2011;6:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cui Q, Pitt JE, Pamukcu A, et al. Blunted mGluR activation disinhibits striatopallidal transmission in parkinsonian mice. Cell Rep. 2016;17:2431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bosson A, Boisseau S, Buisson A, Savasta M, Albrieux M. Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. Glia. 2015;63:673–83.

    Article  PubMed  Google Scholar 

  93. Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol. 2012;814:23–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Song YJC, Halliday GM, Holton JL, et al. Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol. 2009;68:1073–83.

    Article  CAS  PubMed  Google Scholar 

  95. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287:1265–9.

    Article  CAS  PubMed  Google Scholar 

  96. Cremades N, Cohen SIA, Deas E, et al. Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell. 2012;149:1048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cavaliere F, Cerf L, Dehay B, et al. In vitro alpha-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiol Dis. 2017;103:101–12.

    Article  CAS  PubMed  Google Scholar 

  98. Mao X, Ou MT, Karuppagounder SS, et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353(6307):aah3374. https://doi.org/10.1126/science.aah3374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Newman EA. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 2003;26:536–42.

    Article  CAS  PubMed  Google Scholar 

  100. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26:523–30.

    Article  CAS  PubMed  Google Scholar 

  101. Angelova PR, Ludtmann MHR, Horrocks MH, et al. Ca2+ is a key factor in alpha-synuclein-induced neurotoxicity. J Cell Sci. 2016;129:1792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jennings A, Tyurikova O, Bard L, Zheng K, Semyanov A, Henneberger C, Rusakov DA. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry. Glia. 2017;65(3):447–59. https://doi.org/10.1002/glia.23103.

    Article  PubMed  Google Scholar 

  103. Pihlstrøm L, Toft M. Genetic variability in SNCA and Parkinson’s disease. Neurogenetics. 2011;12:283–93.

    Article  CAS  PubMed  Google Scholar 

  104. Flagmeier P, Meisl G, Vendruscolo M, Knowles TPJ, Dobson CM, Buell AK, Galvagnion C. Mutations associated with familial Parkinson’s disease alter the initiation and amplification steps of alpha-synuclein aggregation. Proc Natl Acad Sci U S A. 2016;113:10328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dettmer U, Newman AJ, Soldner F, Luth ES, Kim NC, von Saucken VE, Sanderson JB, Jaenisch R, Bartels T, Selkoe D. Parkinson-causing alpha-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun. 2015;6:7314.

    Article  PubMed  Google Scholar 

  106. Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H. Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain. 2010;3:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gan L, Vargas MR, Johnson DA, Johnson JA. Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J Neurosci. 2012;32:17775–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marxreiter F, Ettle B, May VEL, et al. Glial A30P alpha-synuclein pathology segregates neurogenesis from anxiety-related behavior in conditional transgenic mice. Neurobiol Dis. 2013;59:38–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet. 2001;68:895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Samaranch L, Lorenzo-Betancor O, Arbelo JM, et al. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain. 2010;133:1128–42.

    Article  PubMed  Google Scholar 

  111. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85:257–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Choi I, Kim J, Jeong H-K, Kim B, Jou I, Park SM, Chen L, Kang U-J, Zhuang X, Joe E-H. PINK1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced AKT and increased p38 MAPK activation, and downregulation of EGFR. Glia. 2013;61:800–12.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Choi I, Choi D-J, Yang H, et al. PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes. Mol Brain. 2016;9:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.

    Article  CAS  PubMed  Google Scholar 

  115. Matsumine H, Yamamura Y, Hattori N, Kobayashi T, Kitada T, Yoritaka A, Mizuno Y. A microdeletion of D6S305 in a family of autosomal recessive juvenile parkinsonism (PARK2). Genomics. 1998;49:143–6.

    Article  CAS  PubMed  Google Scholar 

  116. Schlossmacher MG, Frosch MP, Gai WP, et al. Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol. 2002;160:1655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Doherty KM, Hardy J. Parkin disease and the Lewy body conundrum. Mov Disord. 2013;28:702–4.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Solano RM, Casarejos MJ, Menendez-Cuervo J, Rodriguez-Navarro JA, Garcia de Yebenes J, Mena MA. Glial dysfunction in parkin null mice: effects of aging. J Neurosci. 2008;28:598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH. Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem. 2002;83:1431–40.

    Article  CAS  PubMed  Google Scholar 

  120. Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299:256–9.

    Article  CAS  PubMed  Google Scholar 

  121. Taipa R, Pereira C, Reis I, Alonso I, Bastos-Lima A, Melo-Pires M, Magalhaes M. DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain. 2016;139:1680–7.

    Article  PubMed  Google Scholar 

  122. Bandopadhyay R, Kingsbury AE, Cookson MR, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain. 2004;127:420–30.

    Article  PubMed  Google Scholar 

  123. Mullett SJ, Di Maio R, Greenamyre JT, Hinkle DA. DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress. J Mol Neurosci. 2013;49:507–11.

    Article  CAS  PubMed  Google Scholar 

  124. Mullett SJ, Hinkle DA. DJ-1 deficiency in astrocytes selectively enhances mitochondrial complex I inhibitor-induced neurotoxicity. J Neurochem. 2011;117:375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Larsen NJ, Ambrosi G, Mullett SJ, Berman SB, Hinkle DA. DJ-1 knock-down impairs astrocyte mitochondrial function. Neuroscience. 2011;196:251–64.

    Article  CAS  PubMed  Google Scholar 

  126. Kim KS, Kim JS, Park JY, Suh YH, Jou I, Joe EH, Park SM. DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Hum Mol Genet. 2013;22:4805–17.

    Article  CAS  PubMed  Google Scholar 

  127. Kim J-M, Cha S-H, Choi YR, Jou I, Joe E-H, Park SM. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep. 2016;6:28823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lev N, Barhum Y, Ben-Zur T, Melamed E, Steiner I, Offen D. Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity. J Mol Neurosci. 2013;50:542–50.

    Article  CAS  PubMed  Google Scholar 

  129. Ross OA, Soto-Ortolaza AI, Heckman MG, et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: a case-control study. Lancet Neurol. 2011;10:898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nalls MA, Plagnol V, Hernandez DG, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet. 2011;377:641–9.

    Article  CAS  PubMed  Google Scholar 

  131. Miklossy J, Arai T, Guo J-P, Klegeris A, Yu S, McGeer EG, McGeer PL. LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol. 2006;65:953–63.

    Article  CAS  PubMed  Google Scholar 

  132. Cookson MR. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci. 2010;11:791–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MPM, Plun-Favreau H, Giunti P, Tooze SA, Bandopadhyay R, Lewis PA. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta. 2013;1833:2900–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Henry AG, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, Hirst WD. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet. 2015;24:6013–28.

    Article  CAS  PubMed  Google Scholar 

  135. Colom-Cadena M, Gelpi E, Charif S, Belbin O, Blesa R, Marti MJ, Clarimon J, Lleo A. Confluence of alpha-synuclein, tau, and beta-amyloid pathologies in dementia with Lewy bodies. J Neuropathol Exp Neurol. 2013;72:1203–12.

    Article  CAS  PubMed  Google Scholar 

  136. Parkkinen L, Soininen H, Alafuzoff I. Regional distribution of alpha-synuclein pathology in unimpaired aging and Alzheimer disease. J Neuropathol Exp Neurol. 2003;62:363–7.

    Article  CAS  PubMed  Google Scholar 

  137. Markesbery WR, Jicha GA, Liu H, Schmitt FA. Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol. 2009;68:816–22.

    Article  PubMed  Google Scholar 

  138. Hansen LA, Armstrong DM, Terry RD. An immunohistochemical quantification of fibrous astrocytes in the aging human cerebral cortex. Neurobiol Aging. 1987;8:1–6.

    Article  CAS  PubMed  Google Scholar 

  139. Schechter R, Yen SH, Terry RD. Fibrous astrocytes in senile dementia of the Alzheimer type. J Neuropathol Exp Neurol. 1981;40:95–101.

    Article  CAS  PubMed  Google Scholar 

  140. Beach TG, Walker R, McGeer EG. Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia. 1989;2:420–36.

    Article  CAS  PubMed  Google Scholar 

  141. Tong J, Ang LC, Williams B, Furukawa Y, Fitzmaurice P, Guttman M, Boileau I, Hornykiewicz O, Kish SJ. Low levels of astroglial markers in Parkinson’s disease: relationship to alpha-synuclein accumulation. Neurobiol Dis. 2015;82:243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van den Berge SA, Kevenaar JT, Sluijs JA, Hol EM. Dementia in Parkinson’s disease correlates with alpha-synuclein pathology but not with cortical astrogliosis. Park Dis. 2012;2012:420957.

    Google Scholar 

  143. Ferrer I, Lopez-Gonzalez I, Carmona M, Arregui L, Dalfo E, Torrejon-Escribano B, Diehl R, Kovacs GG. Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol. 2014;73:81–97.

    Article  CAS  PubMed  Google Scholar 

  144. Broe M, Kril J, Halliday GM. Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain. 2004;127:2214–20.

    Article  PubMed  Google Scholar 

  145. McGeer PL, McGeer EG. History of innate immunity in neurodegenerative disorders. Front Pharmacol. 2011;2:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol. 2007;114:231–41.

    Article  CAS  PubMed  Google Scholar 

  147. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 2000;99:14–20.

    Article  CAS  PubMed  Google Scholar 

  148. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett. 1996;211:13–6.

    Article  CAS  PubMed  Google Scholar 

  149. Choi D-K, Pennathur S, Perier C, et al. Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci. 2005;25:6594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Knott C, Stern G, Kingsbury A, Welcher AA, Wilkin GP. Elevated glial brain-derived neurotrophic factor in Parkinson’s diseased nigra. Parkinsonism Relat Disord. 2002;8:329–41.

    Article  CAS  PubMed  Google Scholar 

  151. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience. 1993;52:1–6.

    Article  CAS  PubMed  Google Scholar 

  152. Hoekstra JG, Cook TJ, Stewart T, Mattison H, Dreisbach MT, Hoffer ZS, Zhang J. Astrocytic dynamin-like protein 1 regulates neuronal protection against excitotoxicity in Parkinson disease. Am J Pathol. 2015;185:536–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. McKeith I. Dementia with Lewy bodies. Dialogues Clin Neurosci. 2004;6:333–41.

    PubMed  PubMed Central  Google Scholar 

  154. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol. 2010;120:131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shoji M, Harigaya Y, Sasaki A, et al. Accumulation of NACP/alpha-synuclein in lewy body disease and multiple system atrophy. J Neurol Neurosurg Psychiatry. 2000;68:605–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ishiki A, Kamada M, Kawamura Y, Terao C, Shimoda F, Tomita N, Arai H, Furukawa K. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem. 2016;136:258–61.

    Article  CAS  PubMed  Google Scholar 

  157. Holmberg B, Rosengren L, Karlsson JE, Johnels B. Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson’s disease. Mov Disord. 1998;13:70–7.

    Article  CAS  PubMed  Google Scholar 

  158. Katsuse O, Iseki E, Kosaka K. Immunohistochemical study of the expression of cytokines and nitric oxide synthases in brains of patients with dementia with Lewy bodies. Neuropathology. 2003;23:9–15.

    Article  PubMed  Google Scholar 

  159. Hoshi A, Tsunoda A, Tada M, Nishizawa M, Ugawa Y, Kakita A. Expression of aquaporin 1 and aquaporin 4 in the temporal neocortex of patients with Parkinson’s disease. Brain Pathol. 2017;27(2):160–8. https://doi.org/10.1111/bpa.12369.

    Article  CAS  PubMed  Google Scholar 

  160. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76:845–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Maetzler W, Berg D, Synofzik M, Brockmann K, Godau J, Melms A, Gasser T, Hornig S, Langkamp M. Autoantibodies against amyloid and glial-derived antigens are increased in serum and cerebrospinal fluid of Lewy body-associated dementias. J Alzheimers Dis. 2011;26:171–9.

    Article  CAS  PubMed  Google Scholar 

  162. Mollenhauer B, Cullen V, Kahn I, et al. Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol. 2008;213:315–25.

    Article  CAS  PubMed  Google Scholar 

  163. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9:260–7.

    Article  CAS  PubMed  Google Scholar 

  164. Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer’s disease—lessons from pathology. BMC Med. 2014;12:206.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Guan J, Pavlovic D, Dalkie N, Waldvogel HJ, O’Carroll SJ, Green CR, Nicholson LFB. Vascular degeneration in Parkinson’s disease. Brain Pathol. 2013;23:154–64.

    Article  CAS  PubMed  Google Scholar 

  166. Fellner L, Jellinger KA, Wenning GK, Stefanova N. Glial dysfunction in the pathogenesis of alpha-synucleinopathies: emerging concepts. Acta Neuropathol. 2011;121:675–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Radford R, Rcom-H’cheo-Gauthier A, Wong MB, et al. The degree of astrocyte activation in multiple system atrophy is inversely proportional to the distance to alpha-synuclein inclusions. Mol Cell Neurosci. 2015;65:68–81.

    Article  CAS  PubMed  Google Scholar 

  168. Mochizuki R, Takeda A, Sato N, Kimpara T, Onodera H, Itoyama Y, Muramatsu T. Induction of midkine expression in reactive astrocytes following rat transient forebrain ischemia. Exp Neurol. 1998;149:73–8.

    Article  CAS  PubMed  Google Scholar 

  169. Kato S, Shinozawa T, Takikawa M, Kato M, Hirano A, Awaya A, Ohama E. Midkine, a new neurotrophic factor, is present in glial cytoplasmic inclusions of multiple system atrophy brains. Acta Neuropathol. 2000;100:481–9.

    Article  CAS  PubMed  Google Scholar 

  170. Kawamoto Y, Nakamura S, Akiguchi I, Kimura J. Increased brain-derived neurotrophic factor-containing axons in the basal ganglia of patients with multiple system atrophy. J Neuropathol Exp Neurol. 1999;58:765–72.

    Article  CAS  PubMed  Google Scholar 

  171. Kawamoto Y, Akiguchi I, Shirakashi Y, Honjo Y, Tomimoto H, Takahashi R, Budka H. Accumulation of Hsc70 and Hsp70 in glial cytoplasmic inclusions in patients with multiple system atrophy. Brain Res. 2007;1136:219–27.

    Article  CAS  PubMed  Google Scholar 

  172. Nakamura K, Mori F, Kon T, et al. Accumulation of phosphorylated alpha-synuclein in subpial and periventricular astrocytes in multiple system atrophy of long duration. Neuropathology. 2016;36:157–67.

    Article  CAS  PubMed  Google Scholar 

  173. Bassil F, Monvoisin A, Canron M-H, Vital A, Meissner WG, Tison F, Fernagut P-O. Region-specific alterations of matrix metalloproteinase activity in multiple system atrophy. Mov Disord. 2015;30:1802–12.

    Article  CAS  PubMed  Google Scholar 

  174. Salvesen L, Ullerup BH, Sunay FB, Brudek T, Lokkegaard A, Agander TK, Winge K, Pakkenberg B. Changes in total cell numbers of the basal ganglia in patients with multiple system atrophy—a stereological study. Neurobiol Dis. 2015;74:104–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Biology Department and Neuroscience Program at the University of Hartford for their support. Also, special thanks to Irene Luccia Pearl for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew O. Koob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koob, A.O., Sacchetti, P. (2019). Astrocytes and the Synucleinopathies. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics