Skip to main content

Inherited Neurodegenerative Disorders

  • Chapter
  • First Online:
Pathology, Prevention and Therapeutics of Neurodegenerative Disease

Abstract

Neurodegeneration is the progressive loss of function of neurons and an inescapable event in incurable diseases involving Huntington Disease (HD), Parkinson Disease (PD), and Alzheimer Disease (AD). These and other such diseases share similar pathogenic mechanisms including atypical protein assembly, oxidative pathway dysfunction, and apoptotic cellular death. Neuronal degeneration may be exhibited at different levels like neuronal circuitry aligning from molecular to systemic levels.

In this chapter, we focus on the inherited neurodegenerative diseases and their molecular pathogenesis. We will be looking into highly researched inherited neurodegenerative diseases including HD, PD, AD, and ALS and review the varied knowledge on inheritance patterns and disease mechanisms that have been documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lill CM, Bertram L. Towards unveiling the genetics of neurodegenerative diseases. Semin Neurol. 2011;31(5):531–41.

    Article  Google Scholar 

  2. Roos RA. Huntington’s disease: a clinical review. Orphanet J Rare Dis. 2010;5:40.

    Article  Google Scholar 

  3. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest. 2005;115(6):1449–57.

    Article  CAS  Google Scholar 

  4. Lander ES. The new genomics: global views of biology. Science. 1996;274(5287):536–9.

    Article  CAS  Google Scholar 

  5. Petrozzi L, Ricci G, Giglioli NJ, Siciliano G, Mancuso M. Mitochondria and neurodegeneration. Biosci Rep. 2007;27(1-3):87–104.

    Article  CAS  Google Scholar 

  6. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.

    Article  CAS  Google Scholar 

  7. Perry G, Nunomura A, Hirai K, Zhu X, Perez M, Avila J, et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med. 2002;33(11):1475–9.

    Article  CAS  Google Scholar 

  8. Kwong JQ, Beal MF, Manfredi G. The role of mitochondria in inherited neurodegenerative diseases. J Neurochem. 2006;97(6):1659–75.

    Article  CAS  Google Scholar 

  9. Djousse L, Knowlton B, Hayden MR, Almqvist EW, Brinkman RR, Ross CA, et al. Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics. 2004;5(2):109–14.

    Article  CAS  Google Scholar 

  10. Davies SW, Beardsall K, Turmaine M, DiFiglia M, Aronin N, Bates GP. Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet. 1998;351(9096):131–3.

    Article  CAS  Google Scholar 

  11. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90(3):537–48.

    Article  CAS  Google Scholar 

  12. Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.

    Article  CAS  Google Scholar 

  13. Trottier Y, Biancalana V, Mandel JL. Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet. 1994;31(5):377–82.

    Article  CAS  Google Scholar 

  14. Sumathipala DS, Jayasekara RW, Dissanayake VH. Clinical and genetic features of Huntington disease in Sri Lanka. BMC Neurol. 2013;13:191.

    Article  Google Scholar 

  15. Creighton S, Almqvist EW, MacGregor D, Fernandez B, Hogg H, Beis J, et al. Predictive, pre-natal and diagnostic genetic testing for Huntington’s disease: the experience in Canada from 1987 to 2000. Clin Genet. 2003;63(6):462–75.

    Article  CAS  Google Scholar 

  16. Damiano M, Galvan L, Deglon N, Brouillet E. Mitochondria in Huntington’s disease. Biochim Biophys Acta. 2010;1802(1):52–61.

    Article  CAS  Google Scholar 

  17. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology. 1993;43(12):2689–95.

    Article  CAS  Google Scholar 

  18. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol. 1997;41(2):160–5.

    Article  CAS  Google Scholar 

  19. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol. 1997;41(5):646–53.

    Article  CAS  Google Scholar 

  20. Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, et al. HD CAG repeat implicates a dominant property of Huntington in mitochondrial energy metabolism. Hum Mol Genet. 2005;14(19):2871–80.

    Article  CAS  Google Scholar 

  21. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  CAS  Google Scholar 

  22. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40.

    Article  CAS  Google Scholar 

  23. Goate A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis. 2006;9(Suppl 3):341–7.

    Article  CAS  Google Scholar 

  24. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376(6543):775–8.

    Article  CAS  Google Scholar 

  25. Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr JT, Shen Y, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology. 2012;78(16):1250–7.

    Article  CAS  Google Scholar 

  26. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999;65(3):664–70.

    Article  CAS  Google Scholar 

  27. Alonso Vilatela ME, Lopez-Lopez M, Yescas-Gomez P. Genetics of Alzheimer’s disease. Arch Med Res. 2012;43(8):622–31.

    Article  CAS  Google Scholar 

  28. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56.

    Article  CAS  Google Scholar 

  29. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    Article  CAS  Google Scholar 

  30. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35.

    Article  CAS  Google Scholar 

  31. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–23.

    Article  CAS  Google Scholar 

  32. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 2005;57(5):695–703.

    Article  CAS  Google Scholar 

  33. Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK. Electron transport chain defects in Alzheimer’s disease brain. Neurology. 1994;44(6):1090–6.

    Article  Google Scholar 

  34. Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, et al. Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem. 1992;59(2):776–9.

    Article  CAS  Google Scholar 

  35. Fang F, Kamel F, Sandler DP, Sparen P, Ye W. Maternal age, exposure to siblings, and risk of amyotrophic lateral sclerosis. Am J Epidemiol. 2008;167(11):1281–6.

    Article  Google Scholar 

  36. Tandan R, Bradley WG. Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol. 1985;18(3):271–80.

    Article  CAS  Google Scholar 

  37. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223–6.

    Article  CAS  Google Scholar 

  38. Chio A, Traynor BJ, Lombardo F, Fimognari M, Calvo A, Ghiglione P, et al. Prevalence of SOD1 mutations in the Italian ALS population. Neurology. 2008;70(7):533–7.

    Article  CAS  Google Scholar 

  39. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55.

    Article  CAS  Google Scholar 

  40. Beleza-Meireles A, Al-Chalabi A. Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph Lateral Scler. 2009;10(1):1–14.

    Article  CAS  Google Scholar 

  41. Fallis BA, Hardiman O. Aggregation of neurodegenerative disease in ALS kindreds. Amyotroph Lateral Scler. 2009;10(2):95–8.

    Article  Google Scholar 

  42. Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol. 2011;7(11):603–15.

    Article  CAS  Google Scholar 

  43. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.

    Article  CAS  Google Scholar 

  44. Gurney ME. Transgenic-mouse model of amyotrophic lateral sclerosis. N Engl J Med. 1994;331(25):1721–2.

    Article  CAS  Google Scholar 

  45. Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998;18(9):3241–50.

    Article  CAS  Google Scholar 

  46. Higgins CM, Jung C, Xu Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 2003;4:16.

    Article  Google Scholar 

  47. Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14.

    Article  CAS  Google Scholar 

  48. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8(12):1128–39.

    Article  CAS  Google Scholar 

  49. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.

    Article  Google Scholar 

  50. Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18(R1):R48–59.

    Article  CAS  Google Scholar 

  51. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445–54.

    Article  CAS  Google Scholar 

  52. Shashidharan P, Good PF, Hsu A, Perl DP, Brin MF, Olanow CW. TorsinA accumulation in Lewy bodies in sporadic Parkinson’s disease. Brain Res. 2000;877(2):379–81.

    Article  CAS  Google Scholar 

  53. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, et al. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26(1):41–50.

    Article  CAS  Google Scholar 

  54. Walker FO. Huntington’s disease. Semin Neurol. 2007;27(2):143–50.

    Article  Google Scholar 

  55. Thompson JC, Snowden JS, Craufurd D, Neary D. Behavior in Huntington’s disease: dissociating cognition-based and mood-based changes. J Neuropsychiatry Clin Neurosci. 2002;14(1):37–43.

    Article  Google Scholar 

  56. Sumathipala DS, Abeysekera GS, Jayasekara RW, Tallaksen CM, Dissanayake VH. Autosomal dominant hereditary ataxia in Sri Lanka. BMC Neurol. 2013;13:39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sumathipala, D.S., Dissanayake, V.H.W. (2019). Inherited Neurodegenerative Disorders. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics