Skip to main content

Transmission Electron Microscopy

  • Chapter
  • First Online:
Progress in Nanoscale Characterization and Manipulation

Abstract

Conventional TEM (CTEM) is referring to the basic TEM techniques, i.e., electron diffraction and imaging techniques such as bright-field (BF), dark-field (DF) and high-resolution TEM (HRTEM). These techniques, in general, provide morphology and structural analysis of the specimen material. CTEM has been used to distinguish the analytical TEM tools that appeared much later in the history of TEM, including scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDX) techniques. Analytical TEM techniques are sensitive to the chemical and electronic structures of the specimen, sometimes are capable in providing crystal structures as well. However, TEM techniques have been developing quickly in recent years and often utilize the advantages of both CTEM and analytical TEM. For example, electron diffraction techniques are considered to be CTEM. However, a newly developed technique, scanning electron nanodiffraction (SEND), has combined features of the CTEM and STEM by Tao et al. (Phys Rev Lett 103:097202, 2009). Using SEND, the variation of certain type of electronic structures can be mapped in real-space by Zuo and Tao (Scanning transmission electron microscopy: imaging and analysis. Springer, London, 2010). Moreover, some techniques that were never used in TEM have emerged and show interesting potential in a number of research areas. One of them is the secondary electron microscopy (SEM) installed in STEM, benefited from the development of the SEM detectors (Zhu et al. Nat Mater 8:808, 2009). The capability of atomic resolution EELS and EDX has exhibited a promising future that the chemical or electronic structures may be obtained simultaneously with the crystal structure. All the above accomplishments are suggesting that the difference between CTEM and analytical TEM could be diminishing in the fast development of the TEM techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharanov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Allen, L.J., McBride, W., O’Leary, N.L., Oxley, M.P.: Exit wave reconstruction at atomic resolution. Ultramicroscopy 100, 91 (2004)

    Article  Google Scholar 

  • Arruebo, M., Fernández-Pacheco, R., Ibarra, M.R., Santamaría, J.: Magnetic nanoparticles for drug delivery. Nanotoday 2, 22 (2007)

    Article  Google Scholar 

  • Asaka, T., Anan, Y., Nagai, T., Tsutsumi, S., Kuwahara, H., Kimoto, K., Tokura, Y., Matsui, Y.: Ferromagnetic domain structures and nanoclusters in Nd1/2Sr1/2MnO\(_3\). Phys. Rev. Lett. 89, 207203 (2002)

    Article  ADS  Google Scholar 

  • Asaka, T., Kimura, T., Nagai, T., Yu, X.Z., Kimoto, K., Tokura, Y., Matsui, Y.: Observation of magnetic ripple and nanowidth domains in a layered ferromagnet. Phys. Rev. Lett. 95, 227204 (2005)

    Article  ADS  Google Scholar 

  • Asaka, T., Nagao, M., Yokosawa, T., Kokui, K., Takayama-Muromachi, E., Kimoto, K., Fukuda, K., Matsui, Y.: Magnetocrystalline anisotropy behavior in the multiferroic BiMnO\(_3\) examined by Lorentz transmission electron microscopy. Appl. Phys. Lett 101, 052407 (2012)

    Article  ADS  Google Scholar 

  • Béché, A., Rouvière, J.L., Barnes, J.P., Cooper, D.: Dark field electron holography for strain measurement. Ultramicroscopy 111, 227 (2011)

    Article  Google Scholar 

  • Beleggia, M., Kasama, T., Dunin-Borkowski, R.E., Hofmann, S., Pozzi, G.: Direct measurement of the charge distribution along a biased carbon nanotube bundle using electron holography. Appl. Phys. Lett. 98, 243101 (2011)

    Article  ADS  Google Scholar 

  • Blumenau, A.T., Fall, C.J., Jones, R., Oberg, S., Fravenheim, T., Briddon, P.R.: Structure and motion of basal dislocations in silicon carbide. Phys. Rev. B. 68, 174108 (2003)

    Article  ADS  Google Scholar 

  • Bonevich, J.E., Harada, K., Matsuda, T., Kasai, H., Yoshida, T., Pozzi, G., Tonomura, A.: Electron holography observation of vortex lattice in a superconductor. Phys. Rev. Lett. 70, 2952 (1993)

    Article  ADS  Google Scholar 

  • Boothroyd, C.B.: Why don’t high-resolution simulations and images match? J. Microsc. 190, 99 (1998)

    Article  Google Scholar 

  • Boothroyd, C.B.: Quantification of high-resolution electron microscope images of amorphous carbon. Ultramicroscopy 83, 159 (2000)

    Article  Google Scholar 

  • Boothroyd, C.B., Dunin-Borkowski, R.E., Stobbs, W.M., Humphreys, C.J.: Quantifying the effects of amorphous layers on image contrast using energy filtered transmission electron microscopy beam-solid interact. Mater. Res. Soc. Symp. 354, 495 (1995)

    Article  Google Scholar 

  • Bourret, A., Desseaux, J., Renault, A.: Core structure of the lomer dislocation in germanium and silicon. Philos. Mag. A. 45, 1 (1982)

    Article  ADS  Google Scholar 

  • Bromwich, T.J., Kasama, T., Chong, R.K.K., Dunin-Borkowski, R.E., Petford-Long, A.K., Heinonen, O.G., Ross, C.A.: Remanent magnetic states and interactions in nano-pillars. Nanotechnology 17, 4367 (2006)

    Article  ADS  Google Scholar 

  • Burger, W.: Phys. Status Solidi. 4, 713 (1971a)

    Article  ADS  Google Scholar 

  • Burger, W.: Phys. Status Solidi. 4, 723 (1971b)

    Article  ADS  Google Scholar 

  • Burger, W.: Phys. Status Solidi. 13, 429 (1972)

    Article  ADS  Google Scholar 

  • Buxton, B.F., Eades, J.A., Steeds, J.W., Rackham, G.M.: The symmetry of electron diffraction zone axis patterns. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 281, 171 (1976)

    Article  ADS  Google Scholar 

  • Cai, J., Ponce, F.A.: Study of charge distribution across interfaces in GaN/InGaN/GaN single quantum wells using electron holography. J. Appl. Phys. 91, 9856 (2002)

    Article  ADS  Google Scholar 

  • Chapman, J.N.: The investigation of magnetic domain structures in thin foils by electron microscopy. J. Phys. D 17, 623 (1984)

    Article  ADS  Google Scholar 

  • Chapman, J.N.: High resolution imaging of magnetic structures in the transmission electron microscope. Mater. Sci. Eng. B 3, 355 (1989)

    Article  Google Scholar 

  • Chapman, J.N., Morrison, G.R.: J. Magn. Magn. Mater. 35, 254 (1983)

    Article  ADS  Google Scholar 

  • Chapman, J.N., Rogers, D.J., Bernards, J.E.C.: High resolution imaging of magnetic structures in the transmission electron microscope. J. Phys. Paris Colloq. C8(Suppl. 12), 49 (1965)

    Google Scholar 

  • Chapman, J.N., Morrison, G.R., Jakubovics, J.P., Taylor, R.A.: In: Doig, P. (eds.) Investigation of Micromagnetic Structures by STEM Electron Microscopy and Analysis, IOP Conference Series, vol. 1984, no. 68, p. 197 (1983)

    Google Scholar 

  • Chapman, J.N., et al.: Proceeding of the Iop Conference Electron. Microscopy and Analysis 1983(68), 197–200 (1984)

    Google Scholar 

  • Chapman, J.N., Morrison, G.R., Jakubovics, J.P., Taylor, R.A.: Determination of domain wall structures in thin foils of a soft magnetic alloy. J. Magn. Magn. Mater. 49, 277 (1985)

    Article  ADS  Google Scholar 

  • Chapman, J.N., McFadyen, I.R., Bernards, J.P.C.: Investigation of Cr segregation within rf-sputtered CoCr films. J. Magn. Magn. Mater. 62, 359 (1986)

    Article  ADS  Google Scholar 

  • Chapman, J.N., McVitie, S., McFadyen, I.R.: In: Kirschner, J., Murata, K., Venables, J.A. (eds.) Scanning Microscopy Supplement 1, p. 221. AMF O’Hare, Chicago (1987)

    Google Scholar 

  • Chapman, J.N., McFadyen, I.R., McVitie, S.: Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures. IEEE Trans. Magn. 26, 1506 (1990)

    Article  ADS  Google Scholar 

  • Chapman, J.N., Ferrier, R.P., Heyderman, L.J., McVitie, S., Nicholson, W.A.P., Bormans, B.: Micromagnetics, microstructure and microscopy. In: Proceedings of the Institute of Physics Electron and Analysis Group Conference, Electron Microscopy and Analysis 1993, pp. 1–8 (1993)

    Google Scholar 

  • Chapman, J.N., Johnston, A.B., Heyderman, L.J., McVitie, S., Nicholson, W.A.P., Bormans, B.: Coherent magnetic imaging by TEM. IEEE Trans. Magn. 30, 4479 (1994)

    Article  ADS  Google Scholar 

  • Chapman, J.N., Heyderman, L.J., McVitie, S., Nicholson, W.A.P.: In: Bando, Y., Kamo, M., Haneda, H., Aizaw, T. (eds.) Proceedings of the 2nd International Symposium on Advanced Materials (ISAM’95), p. 123 (1995)

    Google Scholar 

  • Chapman, J.N., Scheinfein, M.R.: Transmission electron microscopies of magnetic microstructures. J. Magn. Magn. Mater. 200, 729 (1999)

    Article  ADS  Google Scholar 

  • Charudatta, P., et al.: phys. Rev. Lett. 104, 253901 (2010)

    Google Scholar 

  • Che, R.C., Takeguchi, M., Shimojo, M., Zhang, W., Furuya, K.: Fabrication and electron holography characterization of FePt alloy nanorods. Appl. Phys. Lett. 87, 223109 (2005)

    Article  ADS  Google Scholar 

  • Chen, J.H., Costan, E., van Huis, M.A., Xu, Q., Zandbergen, H.W.: Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312, 416 (2006)

    Article  ADS  Google Scholar 

  • Cherns, D., Barnard, J., Ponce, F.A.: Measurement of the piezoelectric field across strained InGaN/GaN layers by electron holography. Solid State Commun. 111, 281 (1999)

    Article  ADS  Google Scholar 

  • Chou, L.J., Chang, M.T., Chueh, Y.L., Kim, J.J., Park, H.S., Shindo, D.: Electron holography for improved measurement of microfields in nanoelectrode assemblies. Appl. Phys. Lett. 89, 023112 (2006)

    Article  ADS  Google Scholar 

  • Chung, S., Johnson, S.R., Ding, D., Zhang, Y.H., Smith, D.J., McCartney, M.R.: Quantitative analysis of dopant distribution and activation across p-n junctions in AlGaAs/GaAs light-emitting diodes using off-axis electron holography. IEEE Trans. Electron Dev. 56, 1919 (2009)

    Article  ADS  Google Scholar 

  • Chung, S., Johnson, S.R., Ding, D., Zhang, Y.H., Smith, D.J., McCartney, M.R.: Quantitative dopant profiling of p-n junction in InGaAs/AlGaAs light-emitting diode using off-axis electron holography. J. Vac. Sci. Technol. B 28, C1D11 (2010)

    Google Scholar 

  • Chung, S., Berechman, R.A., McCartney, M.R., Skowronski, M.: Electronic structure analysis of threading screw dislocations in 4H-SiC using electron holography. J. Appl. Phys. 109, 034906 (2011)

    Article  ADS  Google Scholar 

  • Coene, W., Janssen, G., Debeeck, M.O., Vandyck, D.: Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron-microscopy. Phys. Rev. Lett. 69, 3743 (1992)

    Article  ADS  Google Scholar 

  • Coene, W.M.J., Thust, A., de Beeck, M., VanDyck, D.: Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109 (1996)

    Article  Google Scholar 

  • Cooper, D., Truche, R., Rivallin, P., Hartmann, J.M., Laugier, F., Bertin, F., Chabli, A., Rouviere, J.L.: Medium resolution off-axis electron holography with millivolt sensitivity. Appl. Phys. Lett. 91, 143501 (2007)

    Article  ADS  Google Scholar 

  • Cooper, D., Barnes, J.P., Hartmann, J.M., Béché, A., Rouvière, J.L.: Dark field electron holography for quantitative strain measurements with nanometer-scale spatial resolution. Appl. Phys. Lett. 95, 053501 (2009)

    Article  ADS  Google Scholar 

  • Cooper, D., Béché, A., Hartmann, J.M., Carron, V., Rouvière, J.L.: Strain evolution during the silicidation of nanometer-scale SiGe semiconductor devices studied by dark field electron holography. Appl. Phys. Lett. 96, 113508 (2010a)

    Article  ADS  Google Scholar 

  • Cooper, D., Béché, A., Hartmann, J.M., Carron, V., Rouvière, J.L.: Strain mapping for the semiconductor industry by dark-field electron holography and nanobeam electron diffraction with nm resolution. Semicond. Sci. Technol. 25, 095012 (2010b)

    Article  ADS  Google Scholar 

  • Cowley, J.M.: Twenty forms of electron holography. Ultramicroscopy 41, 335 (1992)

    Article  Google Scholar 

  • Cowley, J.M.: Diffraction Physics, 3rd edn. North-Holland Personal Library, Amsterdam (1995)

    Google Scholar 

  • Cowley, J.M., Moodie, A.F.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609 (1957a)

    Google Scholar 

  • Cowley, J.M., Moodie, A.: Fourier images: I-the point source. Proc. Phys. Soc. B 70, 486 (1957b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cowley, J.M., Moodie, A.: Fourier images IV: the phase grating. Proc. Phys. Soc. 76, 378 (1960)

    Article  ADS  Google Scholar 

  • Cui, Y.R., Liu, H., Shi, Y., Li, X.M., Ma, H.Z.: Improvement of annealed method to enhance magnetic properties of lJ85 alloys. Foundry Technol. 26, 1145 (2005)

    Google Scholar 

  • Cumings, J., Zettl, A., McCartney, M.R., Spence, J.C.H.: Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002)

    Article  ADS  Google Scholar 

  • Daberkow, I., Herrmann, K.H., Liu, L.B., Rau, W.D.: Performance of electron image converters with yag single-crystal screen and ccd sensor. Ultramicroscopy 38, 215 (1991)

    Article  Google Scholar 

  • Dagotto, E.: Complexity in strongly correlated electronic systems. Science 309, 257 (2005)

    Article  ADS  Google Scholar 

  • de Beeck, M.O., Van Dyck, D., Coene, W.: Wave function reconstruction in HRTEM: the parabola method. Ultramicroscopy 64, 167 (1996)

    Article  Google Scholar 

  • De Wolff, P.M.: Pseudo-symmetry of modulated crystal-structures. Acta Cryst. A A30, 777 (1974)

    Article  Google Scholar 

  • De Wolff, P.M., Janssen, T., Janner, A.: The superspace groups for incommensurate crystal structures with a one-dimensional modulation. Acta Cryst. A A37, 625 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Debaerdemaeker, T., Tate, C., Woolfson, M.M.: On the application of phase relationships to complex structures. XXIV. The Sayre tangent formula. Acta Crystallogr. A A41, 286 (1985)

    Article  Google Scholar 

  • Deguchi, M., Tanaka, S., Tanji, T.: Determination of piezoelectric fields across InGaN/GaN quantum wells by means of electron holography. J. Electron. Mater. 39, 815 (2010)

    Article  ADS  Google Scholar 

  • Dekkers, N.H., de Lang, H.: Differential phase contrast in a STEM. Optik 41, 452 (1974)

    Google Scholar 

  • den Hertog, M.I., Schmid, H., Cooper, D., Rouviere, J.L., Björk, M.T., Riel, H., Rivallin, P., Karg, S., Riess, W.: Mapping active dopants in single silicon nanowires using off-axis electron holography. Nano Lett. 9, 3837 (2009)

    Article  ADS  Google Scholar 

  • den Hertog, M.I., Rouviere, J.L., Schmid, H., Cooper, D., Björk, M.T., Riel, H., Dhalluin, F., Gentile, P., Ferret, P., Oehler, F., Baron, T., Rivallin, P., Karg, S., Riess, W.: Off axis holography of doped and intrinsic silico nanowires: interpretation and influence of fields in the vacuum. J. Phys. Conf. Ser. 209, 012027 (2010)

    Article  Google Scholar 

  • Dong, W., Baird, T., Fryer, J.R., Gilmore, C.J., Macnicol, D.D., Bricogne, G., Smith, D.J.: O’keefe, M.A., Hövmoller, S.: Electron microscopy at 1-Å resolution by entropy maximization and likelihood ranking. Nature 355, 605 (1992)

    Article  ADS  Google Scholar 

  • Dorset, D.L.: The accurate electron crystallographic refinement of organic structures containing heavy atoms. Acta Cryst. A 53, 356 (1997)

    Article  Google Scholar 

  • Dorset, D.L., Hauptman, H.A.: Direct phase determination for quasi-kinematical electron-diffraction intensity data from organic microcrystals. Ultramicroscopy 1, 195–201 (1976)

    Article  Google Scholar 

  • Du, K., Phillipp, F.: On the accuracy of lattice-distortion analysis directly from high-resolution transmission electron micrographs. J. Microsc. 221, 63 (2006)

    Article  MathSciNet  Google Scholar 

  • Du, K., von Hochmeister, K., Phillipp, F.: Quantitative comparison of image contrast and pattern between experimental and simulated high-resolution transmission electron micrographs. Ultramicroscopy 107, 281 (2007)

    Article  Google Scholar 

  • Duan, X.F., Gao, M., Poeng, L.M.: Accurate measurement of phase shift in electron holography. Appl. Phys. Lett. 72, 771 (1998)

    Article  ADS  Google Scholar 

  • Dunin-Borkowski, R.E., McCartney, M.R., Frankel, R.B., Bazylinski, D.A., Posfai, M., Buseck, P.R.: Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868 (1998a)

    Article  ADS  Google Scholar 

  • Dunin-Borkowski, R.E., McCartney, M.R., Kardynal, B., Smith, D.J.: Magnetic interactions within patterned cobalt nanostructures using off-axis electron holography. J. Appl. Phys. 84, 374 (1998b)

    Article  ADS  Google Scholar 

  • Dunin-Borkowski, R.E., McCartney, M.R., Posfai, M., Frankel, R.B., Bazylinski, D.A., Buseck, P.R.: Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral. 13, 671 (2001)

    Article  ADS  Google Scholar 

  • Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn. Springer Science+Business Media, New York (2011)

    Book  Google Scholar 

  • Fan, H.F., et al.: Acta Crystallogr. A 41, 163 (1985)

    Article  Google Scholar 

  • Formanek, P., Kittler, M.: Application of electron holography to extended defects: Schottky barriers at NiSi\(_2\) precipitates in silicon. Phys. Stat. Sol. C 2, 1878 (2005)

    Google Scholar 

  • Frank, J.: Optik 41, 90 (1974)

    Google Scholar 

  • Fu, Z.Q., Fan, H.F.: DIMS-a direct-method program for incommensurate modulated structures. J. Appl. Crystallogr. 27, 124 (1994)

    Article  Google Scholar 

  • Fu, Z.Q., Huang, D.X., Li, F.H., Li, J.Q., Zhao, Z.X., Cheng, T.Z., Fan, H.F.: Incommensurate modulation in minute crystals revealed by combining high-resolution electron microscopy and electron diffraction. Ultramicroscopy 54, 229 (1994)

    Article  Google Scholar 

  • Fujita, T., Chen, M.: Quantitative electron holographic tomography for a spherical object. J. Electron Microsc. 58, 301 (2009)

    Google Scholar 

  • Fujita, T., Yamamoto, K., McCartney, M.R., Smith, D.J.: Reconstruction technique for off-axis electron holography using coarse fringes. Ultramicroscopy 106, 486 (2006)

    Article  Google Scholar 

  • Fujita, T., Chen, M., Wang, X., Xu, B., Inoke, K., Yamamoto, K.: J. Appl. Phys. 101, 014323 (2007)

    Article  ADS  Google Scholar 

  • Fukumura, T., Sugawara, H., Hasegawa, T., Tanaka, K., Sakaki, H., Kimura, T., Tokura, Y.: Spontaneous bubble domain formation in a layered ferromagnetic crystal. Science 284, 1969 (1999)

    Article  Google Scholar 

  • Gajdardziska-Josifovska, M.: Off-axis electron holography of hetero-inter-faces. Interf. Sci. 2, 425 (1995)

    Article  Google Scholar 

  • Gajdardziska-Josifovska, M., Carim, A.H.: Applications of electron holography. In: Völkl, E., Allard, L.F., Joy, D.C. (eds.) Introduction to Electron Holography. Kluwer Academic/Plenum Publishers, New York, p. 267 (1999)

    Google Scholar 

  • Ge, B.H., Wang, Y.M., Li, X.M., Li, F.H., Song, H.L., Zhang, H.J.: A study of an incommensurately modulated structure in Ca\(_{0.28}\)Ba\(_{0.72}\)Nb\(_2\)O\(_6\) by electron microscopy. Philos. Mag. Lett. 88, 213 (2008)

    Article  ADS  Google Scholar 

  • Gerchberg, R.W., Saxton, W.O.: Phase determination from image and diffraction plane pictures in the electron-microscope. Optik 34, 277 (1971)

    Google Scholar 

  • Ghiglia, D.C., Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley-Interscience Publication (1998)

    Google Scholar 

  • Goodenough, J.B.: On the influence of 3d4 ions on the magnetic and crystallographic properties of magnetic oxides. J. Phys. Radium 20, 155 (1959)

    Article  Google Scholar 

  • Goodman, P.: A practical method of three-dimensional space-group analysis using convergent-beam electron diffraction. Acta Crystallogr. Sect. A A31, 804 (1975)

    Article  ADS  Google Scholar 

  • Goodman, P., Lehmpfuh, G.: Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A, vol. 20 (1965)

    Google Scholar 

  • Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., Sun, J.Z.: Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys. Rev. B. 54, R15629 (1996)

    Article  ADS  Google Scholar 

  • Gribelyuk, M.A., Domenicucci, A., Ronsheim, G.P.A., McMurray, J.S., Gluschenkov, O.: Application of electron holography to analysis of submicron structure. J. Vac. Sci. Technol. B 26, 408 (2008)

    Article  Google Scholar 

  • Gribelyuk, M.A., Adam, T.N., Ontalus, V., Ronsheim, P.R., Kimball, L., Schonenberg, K.T.: Electron holography of Si: C films and Si:C-based devices. J. Appl. Phys. 110, 063522 (2011)

    Article  ADS  Google Scholar 

  • Haider, M., Braunshausen, G., Schwan, E.: Correction of the spherical-aberration of a 200-kv tem by means of a hexapole-corrector. Optik 99, 167 (1995)

    Google Scholar 

  • Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., Urban, K.: A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53 (1998a)

    Article  Google Scholar 

  • Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K.: Electron microscopy image enhanced. Nature 392, 768 (1998b)

    Article  ADS  Google Scholar 

  • Haine, M.E., Mulvey, T.: The formation of diffraction image with electrons in the Gabor diffraction microscope. J. Opt. Soc. Am. 42, 763 (1951)

    Article  ADS  Google Scholar 

  • Hale, M.E., Fuller, H.W., Rubinstein, H.: Magnetic domain observations by electron microscopy. J. Appl. Phys. 30, 789 (1959)

    Article  ADS  Google Scholar 

  • Han, F.S., Fan, H.F., Li, F.H.: Image processing in high-resolution electron microscopy using the direct method II. Image deconvolution. Acta Cryst. A 42, 353 (1986)

    Article  Google Scholar 

  • Hao, Q., Liu, Y.W., Fan, H.F.: Direct methods in superspace. I. Preliminary theory and test on the determination of incommensurate modulated structures. Acta Cryst. A 43, 820 (1987)

    Google Scholar 

  • Harada, K., Tonomura, A., Togawa, Y., Akashi, T., Matsuda, T.: Double-biprism electron interferometry. Appl. Phys. Lett. 84, 3229 (2004)

    Article  ADS  Google Scholar 

  • Harada, K., Akashi, T., Togawa, Y., Matsuda, T., Tonomura, A.: Optical system for double-biprism electron holography. J. Electron Microsc. 54, 19 (2005)

    Article  Google Scholar 

  • Harada, K., Matsuda, T., Tonomura, A., Akashi, T., Togawa, Y.: Triple-biprism electron interferometry. J. Appl. Phys. 99, 113502 (2006)

    Article  ADS  Google Scholar 

  • Harrison, C.G., Leaver, K.D.: The analysis of two-dimensional domain wall structures by Lorentz microscopy. Phys. Status Solidi. A 15, 415 (1973)

    Article  ADS  Google Scholar 

  • Haun, J.B., Yoon, T.J., Lee, H., Weissleder, R.: Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 291 (2010)

    Article  Google Scholar 

  • He, W.Z., Li, F.H., Chen, H., Kawasaki, K., Oikawa, T.: Image deconvolution for defected crystals in field-emission high-resolution electron microscopy. Ultramicroscopy 70, 1 (1997)

    Article  Google Scholar 

  • He, J.Q., Volkov, V.V., Asaka, T., Chaudhuri, S., Budhani, R.C., Zhu, Y.: Competing two-phase coexistence in doped manganites: direct observations by in situ Lorentz electron microscopy. Phys. Rev. B. 82, 224404 (2010)

    Article  ADS  Google Scholar 

  • Hefferman, S.J., Chapman, J.N., McVitie, S.: In-situ magnetising experiments on small regular particles fabricated by electron beam lithography. J. Magn. Magn. Mater. 83, 223–224 (1990)

    Article  ADS  Google Scholar 

  • Hirsh, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., Whelan, M.J.: Electron Microscopy of Thin Crystals, p. 292. Butterworths, London (1965)

    Google Scholar 

  • Hitachi Technical Data EM Sheet No. 47

    Google Scholar 

  • Holt, D.B.: Grain boundaries in sphalerite structure. J. Phys. Chem. Solids 25, 1385 (1964)

    Article  ADS  Google Scholar 

  • Horiuch, S., Cantoni, M., Tsuruta, T., Matsui, Y.: Direct observation of the interaction between a vortex lattice and dislocations in a superconducting Nb crystal. Appl. Phys. Lett. 31, 1293 (1998)

    Article  ADS  Google Scholar 

  • Hovmöller, S.: CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41, 121 (1992)

    Article  Google Scholar 

  • Hovmöller, S., Sjogren, A., Farrants, G., Sundberg, M., Marinder, B.: Accurate atomic positions from electron-microscopy. Nature. Syst. 311, 238 (1984)

    Article  ADS  Google Scholar 

  • Howie, A.: Hunting the Stobbs factor. Ultramicroscopy 98, 73 (2004)

    Article  Google Scholar 

  • Hsieh, W.K., Chen, F.R., Kai, J.J., Kirkland, A.I.: Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98, 99 (2004)

    Article  Google Scholar 

  • Hu, J.J., Li, F.H.: Maximum entropy image deconvolution in high resolution electron microscopy. Ultramicroscopy 35, 339 (1991)

    Article  Google Scholar 

  • Hu, J.J., Li, F.H., Fan, H.F.: Crystal-structure determination of K\(_2\)O. 7. Nb\(_2\)O\(_5\) by combining high-resolution electron-microscopy and electron-diffraction. Ultramicroscopy 41, 387 (1992)

    Article  Google Scholar 

  • Huang, D.X., He, W.Z., Li, F.H.: Multiple solution in maximum entropy deconvolution of high resolution electron microscope images. Ultramicroscopy 62, 141 (1996a)

    Article  Google Scholar 

  • Huang, D.X., Liu, W., Gu, Y.X., Xiong, J.W., Fan, H.F., Li, F.H.: A method of electron diffraction intensity correction in combination with high-resolution electron microscopy. Acta Cryst. A 52, 152 (1996b)

    Article  Google Scholar 

  • Huang, S.X., Chien, C.L.: Extended Skyrmion phase in epitaxial FeGe (111) thin films. Phys. Rev. Lett. 108, 267201 (2012)

    Article  ADS  Google Scholar 

  • Huber Jr., E.E., Smith, D.O., Goodenough, J.B.: Domain-wall structure in Permalloy films. J. Appl. Phys. 29, 294 (1958)

    Article  ADS  Google Scholar 

  • Hüe, F., Hÿtch, M., Houdellier, F., Bender, H., Claverie, A.: Strain mapping of tensiley strained silicon transistors with embedded Si1-yCy source and drain by dark-field holography. Appl. Phys. Lett. 95, 073103 (2009)

    Article  ADS  Google Scholar 

  • Humphreys, C.J., Spence, J.C.H.: Resolution and illumination coherence in electron-microscopy. Optik 58, 125 (1981)

    Google Scholar 

  • Hÿtch, M.J., Stobbs, W.M.: Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53, 191 (1994)

    Article  Google Scholar 

  • Hÿtch, M.J., Dunin-Borkowski, R.E., Scheinfein, M.R., Moulin, J., Duhamel, C., Mazaleyrat, F., Champion, Y.: Vortex flux channeling in magnetic nanoparticle chains. Phys. Rev. Lett. 91, 257207 (2003)

    Article  ADS  Google Scholar 

  • Hÿtch, M., Houdellier, F., Hüe, F., Snoeck, E.: Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086 (2008)

    Article  ADS  Google Scholar 

  • Hÿtch, M., Houdellier, F., Hüe, F., Snoeck, E.: Dark-field electron holography for the measurement of geometric phase. Ultramicroscopy 111, 1328 (2011)

    Article  Google Scholar 

  • Ikarashi, N., Oshida, M., Miyamura, M., Saitoh, M., Mineji, A., Shishiguchi, S.: Electron holography characterization of ultra-shallow junctions in 30-nm-gate-length metal-oxide-semiconductor field-effect transistors. Jpn. J. Appl. Phys. 47, 2365 (2008)

    Article  ADS  Google Scholar 

  • Ikarashi, N., Toda, A., Uejima, K., Yako, K., Yamamoto, T., Hane, M.: Electron holography for analysis of deep Submicro devicesipresent status and challenges I. Vac. Sci. Technol. B 28, CID5 (2010)

    Google Scholar 

  • Ikeda, M., Sugawara, A., Harada, K.: Twin-electron biprism. J. Electron Microsc. 60, 353 (2011)

    Article  Google Scholar 

  • Inoue, M., Tomita, T., Naruse, M., Akase, Z., Murakami, Y., Shindo, D.: Development of a magnetizing stage for in situ observations with electron holography and Lorentz microscopy. J. Electr. Micros. 54, 509 (2005)

    Article  Google Scholar 

  • Ishizuka, K., Miyazaki, M., Uyeda, N.: Improvement of electron microscope images by the direct phasing method. Acta Crystallogr. A 38, 408 (1982)

    Article  ADS  Google Scholar 

  • Janssen, T., Janner, A., Looijenga-vos, A., Wolff, P.M.D.: International Tables for Crystallography, vol. C. Kluwer Academic Publishers, Dordrecht (2006)

    Book  Google Scholar 

  • Javon, E., Gatel, C., Masseboeuf, A., Snoeck, E.: Electron holography study of the local magnetic switching process in magnetic tunnel junctions. J. Appl. Phys. 107, 093D310 (2010)

    Google Scholar 

  • Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jia, C.L., Thust, A.: Investigation of atomic displacements at a Sigma 3 \(\{111\}\) twin boundary in BaTiO(3) by means of phase-retrieval electron microscopy. Phys. Rev. Lett. 82, 5052 (1999)

    Article  ADS  Google Scholar 

  • Jia, C.L., Urban, K.: Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 2001 (2004)

    Article  ADS  Google Scholar 

  • Jia, C.L., Lentzen, M., Urban, K.: Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870 (2003)

    Article  ADS  Google Scholar 

  • Jiang, H., Li, F.H., Mao, Z.Q.: Electron crystallographic study of Bi2(Sr 0.9 La 0.1) 2CoOy. Micron 30, 417 (1999)

    Article  Google Scholar 

  • Johnson, K.D., Dravid, V.P.: Direct evidence for grain boundary potential barrier breakdown via in situ electron holography. Microsc. Microanal. 5, 428 (1999a)

    Article  ADS  Google Scholar 

  • Johnson, K.D., Dravid, V.P.: Grain boundary barrier breakdown in niobium donor doped strontium titanate using in situ electron holography. Appl. Phys. Lett. 74, 621 (1999b)

    Article  ADS  Google Scholar 

  • Johnston, A.B., Chapman, J.N.: The development of coherent Foucault imaging to investigate magnetic microstructure. J. Microsc. 179, 119 (1995)

    Article  Google Scholar 

  • Jourdain, V., Simpson, E.T., Paillet, M., Kasama, T., Dunin-Borkowski, R.E., Poncharal, P., Zahab, A., Loiseau, A., Robertson, J., Bernier, P.: Periodic inclusion of room-temperature-ferromagnetic metal phosphide nanoparticles in carbon nanotubes. J. Phys. Chem. B 110, 9759 (2006)

    Article  Google Scholar 

  • Junginger, F., Kläui, M., Backes, D., Rüdiger, U., Kasama, T., Dunin-Borkowski, R.E., Heyderman, L.J., Vaz, C.A.F., Bland, J.A.C.: Spin torque and heating effects in current-induced domain wall motion probed by transmission electron microscopy. Appl. Phys. Lett. 90, 132506 (2007)

    Article  ADS  Google Scholar 

  • Kambe, K.: Study of simultaneous reflexion in electron diffraction by crystals I. Theoretical treatment. J. Phys. Soc. Jpn. 12, 13 (1957)

    Article  ADS  Google Scholar 

  • Karle, J., Hauptman, H.: A theory of phase determination for the 4 types of non-centrosymmetric space groups 1P222, 2P22, 3P12, 3P22. Acta Crystallogr. 9, 635 (1956)

    Article  Google Scholar 

  • Kasama, T., Barpanda, P., Dunin-Borkowski, R.E., Newcomb, S.B., McCartney, M.R., Castaño, F.J., Ross, C.A.: Off-axis electron holography of individual pseudo-spin-valve thin film magnetic elements. J. Appl. Phys. 98, 013903 (2005)

    Article  ADS  Google Scholar 

  • Kasahara, T., Shindo, D., Yoshikawa, H., Sato, T., Kondo, K.: In situ observations of domain structures and magnetic flux distributions in Mn-Zn and Ni-Zn ferrites by Lorentz microscopy and electron holography. J. Electron. Microsc. 56, 7 (2007)

    Article  Google Scholar 

  • Kasama, T., Dunin-Borkowski, R.E., Scheinfein, M.R., Tripp, S.L., Liu, J., Wei, A.: Reversal of flux closure states in cobalt nanoparticle rings with coaxial magnetic pulses. Adv. Mater. 20, 4248 (2008)

    Article  Google Scholar 

  • Kasama, T., Church, N.S., Feinberg, J.M., Dunin-Borkowski, R.E., Harrison, R.J.: Direct observation of ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Earth Plane. Sci. Lett. 297, 10 (2010)

    Article  ADS  Google Scholar 

  • Kasama, T., Dunin-Borkowski, R.E., Beleggia, M.: Electron Holography of Magnetic Materials, in Holography-Different Fields of Application. ed. F. A. M. Ramírez, InTech, 53  (2011)

    Google Scholar 

  • Kauffmann, Y., Recnik, A., Kaplan, W.D.: The accuracy of quantitative image matching for HRTEM applications. Mater. Charact. 54, 194 (2005)

    Article  Google Scholar 

  • Kienzle, O., Ernst, F., Mobus, G.: Reliability of atom column positions in a ternary system determined by quantitative high-resolution transmission electron microscopy. J. Microsc. 190, 144 (1998)

    Article  Google Scholar 

  • Kim, J.J., Shindo, D., Murakami, Y., Xia, W., Chou, L.J., Chueh, Y.L.: Direct observation of field emission in a single TaSi\(_2\) nanowire. Nano Lett. 7, 2243 (2007)

    Article  ADS  Google Scholar 

  • Kirkland, E.J.: Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy 15, 151 (1984)

    Article  Google Scholar 

  • Kirkland, E.J., Siegel, B.M., Uyeda, N., Fujiyoshi, Y.: Improved high-resolution image-processing of bright field electron-micrographs. II. Experiment. Ultramicroscopy 17, 87 (1985)

    Article  Google Scholar 

  • Kirkland, E.J., Loane, R.F., Silcox, J.: Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 23, 77 (1987)

    Article  Google Scholar 

  • Kohno, H., Yoshida, H., Ohno, Y., Ichikawa, S., Akita, T., Tanaka, K., Takeda, S.: Formation of silicon/silicide/oxide nanochains and their properties studied by electron holography. Thin Solid Films 204, 464 (2004)

    Google Scholar 

  • Kossel, W., Mollenstedt, G.: Elektroneninterferenzen im konvergenten Bündel. Annalen der Physik 428, 113 (1939)

    Article  ADS  Google Scholar 

  • Koyama, T., Togawa, Y., Takenaka, K., Mori, S.: Ferromagnetic microstructures in the ferromagnetic metallic phase of La\(_{0.825}\)Sr\(_{0.175}\)MnO\(_{3}\). J. Appl. Phys. 111, 07B104 (2012)

    Article  Google Scholar 

  • Krivanek, O.L.: Method for determining coefficient of spherical aberration from a single electron micrograph. Optik 45, 97 (1976)

    Google Scholar 

  • Kruse, P., Rosenauer, A., Gerthsen, D.: Determination of the mean inner potential in III-V semiconductors by electron holography. Ultramicroscopy 96, 11 (2003)

    Article  Google Scholar 

  • Kübel, C., Thust, A.: True Image—A Software Package for Focal-Series Reconstruction in HRTEM. FEI Company (2003)

    Google Scholar 

  • Lau, J.W., Schofield, M.A., Zhu, Y.: A straightforward specimen holder modification for remnant magnetic-field measurement in TEM. Ultramicroscopy 107, 396 (2007)

    Article  Google Scholar 

  • Lee, M., Kang, W., Onose, Y., Tokura, Y., Ong, N.P.: Unusual hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009)

    Article  ADS  Google Scholar 

  • Lehmann, M., Lichte, H.: Is there a Stobbs-factor in off-axis electron holography? Microsc. Microanal. 9, 46 (2003)

    Article  Google Scholar 

  • Lehmann, M., Lichte, H.: Electron holographic material and analysis at atomic dimensions. Cryst. Res. Technol. 40, 149 (2005)

    Article  Google Scholar 

  • Leith, E.N., Upatnieks, J.: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962)

    Article  ADS  Google Scholar 

  • Li, F.H.: Determination of crystal structures by high resolution electron microscopy. Acta Phys. Sin. 26, 193 (1977, in Chinese)

    Google Scholar 

  • Li, F.H.: Developing image-contrast theory and analysis methods in high-resolution electron microscopy. Phys. Status Solidi A. 207, 2639 (2010)

    Article  ADS  Google Scholar 

  • Li, F.H., Fan, H.F.: Acta Phys. Sin. 28, 276 (1979). (in Chinese)

    Google Scholar 

  • Li, F.H., Hashimoto, H.: Use of dynamical scattering in the structure determination of a minute fluorocarbonate mineral cebaite Ba\(_{3}\)Ce\(_{2}\) (CO\(_3\))\(_5\)F\(_2\) by high-resolution electron microscopy. Acta Crystallogr. B. 40, 454 (1984)

    Article  Google Scholar 

  • Li, F.H., Tang, D.: Pseudo-weak-phase-object approximation in high-resolution electron microscopy. I. Theory. Acta Crystallogr. A. 41, 376 (1985)

    Article  Google Scholar 

  • Li, F.H., Wang, D., He, W.Z., Jiang, H.: Amplitude correction in image deconvolution for determining crystal defects at atomic level. J. Electron Microsc. 49, 17 (2000)

    Article  Google Scholar 

  • Li, J.C.: Southern Iron and Steel 116, 7 (2000)

    Google Scholar 

  • Li, L., Ketharanathan, S., Drucker, J., McCartney, M.: Study of hole accumulation in individual germanium quantum dots in p-type silicon by off-axis electron holography. Appl. Phys. Lett. 94, 232108 (2009)

    Article  ADS  Google Scholar 

  • Li, L., Smith, D.J., Dailey, E., Madras, P., Drucker, J., McCartney, M.R.: Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography. Nano Lett. 11, 493 (2011)

    Article  ADS  Google Scholar 

  • Lichte, H.: Optimum focus for taking electron holograms. Ultramicroscopy 38, 13 (1991)

    Article  Google Scholar 

  • Lichte, H., Lehmann, M.: Electron holography-basics and applications. Rep. Prog. Phys. 71, 016102 (2008)

    Article  ADS  Google Scholar 

  • Lichte, H., Geiger, D., Linck, M.: Off-axis electron holography in an aberration-corrected transmission electron microscopy. Phil. Trans. R. Soc. A 367, 3773 (2009)

    Article  ADS  Google Scholar 

  • Lichte, H., Reibold, M., Brand, K., Lehmanm, M.: Ferroelectric electron holography. Ultramicroscopy 93, 199 (2018)

    Article  Google Scholar 

  • Lin, F., Chen, Q., Peng, L.M.: REW-exit-wave reconstruction and alignments for focus-variation high-resolution transmission electron microscopy images. J. Appl. Crystallogr. 40, 614 (2007)

    Article  Google Scholar 

  • Liu, H.H., Duan, X.K., Che, R.C., Wang, Z.F., Duan, X.F.: In situ- investigation of the magnetic domain wall in Permalloy thin film by Lorentz electron microscopy. Mater. Lett. 62, 2654 (2008)

    Article  Google Scholar 

  • Liu, H.H., Duan, X.K., Che, R.C., Wang, Z.F., Duan, X.F.: Measurement of the remnant magnetic-field in Lorentz mode using permalloy. Acta Metall. Sin. 22, 435 (2009a)

    Article  Google Scholar 

  • Liu, H.H., Duan, X.K., Che, R.C., Wang, Z.F., Duan, X.F.: In situ lorentz microscopy observation of displaced chain walls in permalloy. Mater. Trans. 50, 1660 (2009b)

    Article  Google Scholar 

  • Liu, H.R., Wang, Y.G., Liu, Q.X., Yang, Q.B.: A study of the potential barrier at the \(\Sigma \)13(510) tilt boundary of strontium titanate using electron holography and dynamic simulation. J. Phys. D Appl. Phys. 37, 1478 (2004)

    Article  Google Scholar 

  • Liu, J., Li, F.H., Wan, Z.H., Fan, H.F., Wu, X.J., Tamura, T., Tanabe, K.: Incommensurate modulated structure of "Pb"-1223 determined by combining high resolution electron microscopy and electron diffraction. Mater. Trans. JIM 39, 920 (1998)

    Article  Google Scholar 

  • Liu, J., Li, F.H., Wan, Z.H., Fan, H.F., Wu, X.J., Tamura, T., Tanabe, K.: Electron crystallographic image-processing investigation and superstructure determination for (Pb\(_{0.5}\)Sr\(_{0.3}\)Cu\(_{0.2})\)Sr\(_{2}\)(Ca\(_{0.6}\)Sr\(_{0.4})\)Cu\(_{2}\)Oy. Acta Cryst. A. 57, 540 (2001)

    Google Scholar 

  • Liu, L.Z.Y., Rao, D.V.S., Kappers, M.J., Humphreys, C.J., Geiger, D.: Basal-plane stacking faults in non-polar GaN studied by off-axis electron holography. J. Phys. Conf. Ser. 209, 012012 (2010)

    Article  Google Scholar 

  • Liu, W., Wang, N., Wang, R.M., Kumar, S., Duesberg, G.S., Zhang, H.Z., Sun, K.: Atom-resolved evidence of anisotropic growth in ZnS nanotetrapods. Nano Lett. 11, 2983 (2011)

    Article  ADS  Google Scholar 

  • Loudon, J.C., Mathur, N.D., Midgley, P.A.: Charge-ordered ferromagnetic phase in La\(_{0.5}\)Ca\(_{0.5}\)MnO\(_{3}\). Nature 420, 797 (2018)

    Article  ADS  Google Scholar 

  • Lu, B., Li, F.H., Wan, Z.H., Fan, H.F., Mao, Z.Q.: Electron crystallographic Study of Bi4(Sr0.75La0.25)8Cu5Oy structure. Ultramicroscopy 70, 13 (1997a)

    Article  Google Scholar 

  • Lu, Q., Chen, C.C., de Loznne, A.: Observation of magnetic domain behavior in colossal magnetoresistive materials with a magnetic force microscope. Science 276, 2006 (1997b)

    Article  Google Scholar 

  • Marino, F.A., Cullen, D.A., Smith, D.J., McCartney, M.R., Saraniti, M.: Simulation of polarization charge on AlGaN/GaN high electron mobility transistors: comparison to electron holography. J. Appl. Phys. 107, 054516 (2010)

    Article  ADS  Google Scholar 

  • Marshall, A.F., Klein, L., Dodge, J.S., Ahn, C.H., Reiner, J.W., Mieville, L., Antagonazza, L., Kapitulnik, A., Geballe, T.H., Beasley, M.R.: Lorentz transmission electron microscope study of ferromagnetic domain walls in SrRuO\(_3\): Statics, dynamics, and crystal structure correlation. J. Appl. Phys. 85, 4131 (1999)

    Article  ADS  Google Scholar 

  • Matsuda, T., Tonomura, A., Suzuki, R., Endo, J., Osakabe, N., Umezaki, H., Tanabe, H., Sugita, Y., Fujiwara, H.: Observation of microscopic distribution of magnetic field by electron holography. J. Appl. Phys. 53, 544 (1982)

    Article  Google Scholar 

  • Matsuda, T., Hasegawa, S., Igarashi, M., Kobayashi, T., Naito, M., Kajiyama, H., Endo, J., Osakabe, N., Tonomura, A., Aoki, R.: Magnetic field observation of a single flux quantum by electron-holographic interferometry. Phys. Rev. Lett. 62, 2519 (1989)

    Article  ADS  Google Scholar 

  • Matsuda, T., Fukuhara, A., Yoshida, T., Hasegawa, S., Tonomura, A., Ru, Q.: Computer reconstruction from electron holograms and observation of fluxon dynamics. Phys. Rev. Lett. 66, 457 (1991)

    Article  ADS  Google Scholar 

  • Matsumoto, T., Koguchi, M., Suzuki, K., Nishimura, H., Motoyoshi, Y., Wada, N.: Ferroelectric \(90^\circ \) domain structure in a thin film of BaTiO\(_3\) fine ceramics observed by 300 kV electron holography. Appl. Phys. Lett. 92, 072902 (2008)

    Article  ADS  Google Scholar 

  • McCartney, M.R., Gajdardziska-Josifovska, M.: Absolute measurement of normalized thickness, \(t/{\lambda } i\), from off-axis electron holography. Ultramicroscopy 53, 283 (1994)

    Article  Google Scholar 

  • McCartney, M.R., Smith, D.J., Farrow, R.F.C., Marks, R.F.: Off-axis electron holography of epitaxial FePt films. J. Appl. Phys. 82, 2461 (1997)

    Article  ADS  Google Scholar 

  • McCartney, M.R., Ponce, F.A., Cai, J., Bour, D.P.: Mapping electrostatic potential across an AlGaN/InGaN/AlGaN diode by electron holography. Appl. Phys. Lett. 76, 3055 (2000)

    Article  ADS  Google Scholar 

  • McFadyen, I.R., Chapman, J.N.: EMSA Bull. 22, 64 (1992)

    Google Scholar 

  • Mcgibbon, A.J., Pennycook, S.J., Angelo, J.E.: Direct observation of dislocation core structures in CDTE/GAAS(001). Science 269, 519 (1995)

    Article  ADS  Google Scholar 

  • McVitie, S., Chapman, J.N., Zhou, L., Heyderman, L.J., Nicholson, W.A.P.: In-situ magnetising experiments using coherent magnetic imaging in TEM. J. Magn. Magn. Mater. 148, 232 (1995)

    Article  ADS  Google Scholar 

  • Meyer, R.R., Sloan, J., Dunin-Borkowski, R.E., Kirkland, A.I., Novotny, M.C., Bailey, S.R., Hutchison, J.L., Green, M.L.H.: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289, 1324 (2000)

    Article  ADS  Google Scholar 

  • Meyer, R.R., Kirkland, A.I., Saxton, W.O.: A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89 (2002)

    Article  Google Scholar 

  • Midgley, P.A.: An introduction to off-axis electron holography. Micron 32, 167 (2001)

    Article  Google Scholar 

  • Mobus, G.: Retrieval of crystal defect structures from HREM images by simulated evolution I. Basic technique. Ultramicroscopy 65, 205 (1996)

    Article  Google Scholar 

  • Mobus, G., Gemming, T., Gumbsch, P.: The influence of phonon scattering on HREM images. Acta Crystallogr. Sect. A. 54, 83 (1998)

    Article  Google Scholar 

  • Mochizuki, M.: Spin-wave modes and their intense excitation effects in skyrmion crystals. Phys. Rev. Lett. 108, 017601 (2012)

    Article  ADS  Google Scholar 

  • Möllenstedt, G., Bayh, W.: Kontinuierliche phasenschiebung von elektronenwellen im kraftfeldfreien raum durch das magnetische vektorpotential eines solenoids. Physikalische Bl. 18, 299 (1962)

    Article  Google Scholar 

  • Mollenstedt, G., Wahl, H.: Elektronenholographie und Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340 (1968)

    Article  ADS  Google Scholar 

  • Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161 (2004)

    Article  Google Scholar 

  • Morrison, G.R., Chapman, J.N.: Optik 64, 1 (1983)

    Google Scholar 

  • Morrison, G.R., Gong, H., Chapman, J.N., Hrnciar, V.: The measurement of narrow domain-wall widths in SmCo5 using differential phase contrast electron microscopy. J. Appl. Phys. 64, 1338 (1988)

    Article  ADS  Google Scholar 

  • Müller, E., Gerthsen, D., Brückner, P., Sholz, F., Gruber, T., Wang, A.: Probing the electrostatic potential of charged dislocations in n-GaN and n-ZnO epilayers by transmission electron holography. Phys. Rev. B. 73, 245316 (2006)

    Article  ADS  Google Scholar 

  • Murakami, Y., Kasai, H., Kim, J.J., Mamishin, S., Shindo, D., Mori, S., Tonomura, A.: Ferromagnetic domain nucleation and growth in colossal magnetoresistive manganite. Nat. Nanotechnol. 5, 37 (2009)

    Article  ADS  Google Scholar 

  • Nadarzinski, K., Ernst, F.: The atomistic structure of a Sigma = 3, (111) grain boundary in NiAl, studied by quantitative high-resolution transmission electron microscopy. Philos. Mag. A. 74, 641 (1996)

    Article  ADS  Google Scholar 

  • Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P.G., Böni, P.: Topological hall effect in the a phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009)

    Article  ADS  Google Scholar 

  • O’Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielowski, C., Malm, J.O., Mueller, R., Ringnalda, J., Pan, M., Thust, A.: Sub-Angstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215 (2001)

    Article  Google Scholar 

  • Onose, Y., Okamura, Y., Seki, S., Ishiwata, S., Tokura, Y.: Observation of magnetic excitations of skyrmion crystal in a helimagnetic insulator Cu\(_2\)OSeO\(_3\). Phys. Rev. Lett. 109, 037603 (2012)

    Article  ADS  Google Scholar 

  • Orchowski, A., Lichte, H.: High-resolution electron holography of non-periodic structures at the example of a \(\Sigma \) = 13 grain boundary in gold. Ultramicroscopy 64, 199 (1996)

    Article  Google Scholar 

  • Orchowski, A., Rau, W.D., Lichte, H.: Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399 (1995)

    Article  ADS  Google Scholar 

  • Osakabe, N., Yoshida, K., Horiuchi, Y., Matsuda, T., Tanabe, H., Okuwaki, T., Endo, J., Fujiwar, H., Tonomura, A.: Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746 (1983)

    Article  ADS  Google Scholar 

  • Otten, M.T., Mul, P.M., Dejong, M.J.C.: Design and performance of the CM20 FEG field-emission TEM. Microsc. Microanal. Microstruct. 3, 83 (1992)

    Article  Google Scholar 

  • Peng, L.M., Ren, G., Dudarev, S.L., Whelan, M.J.: Debye-Waller factors and absorptive scattering factors of elemental crystals. Acta Crystallogr. Sect. A. 52, 456 (1996)

    Article  Google Scholar 

  • Phatak, C., Petfordtong, A.K., Graef, M.D.: Three dimensional study of the vector potential of magnetic structures. phys. Rev. Lett. 104, 253901 (2010)

    Article  ADS  Google Scholar 

  • Phillipp, F., Du, K., Jin-Phillipp, N.Y.: Quantitative HRTEM studies on local lattice distortions in strained materials systems. Mater. Chem. Phys. 81, 205 (2003)

    Article  Google Scholar 

  • Ploessl, R., Chapman, J.N., Scheinfein, M.R., Blue, J.L., Mansuripur, M., Hoffmann, H.: Micromagnetic structure of domains in Co/Pt multilayers. I. Investigations of wall structure. J. Appl. Phys. 74, 7431 (1993)

    Article  ADS  Google Scholar 

  • Pollard, S.D., Huang, L., Buchanan, K.S., Arena, D.A., Zhu, Y.: Direct dynamic imaging of non-adiabatic spin torque effects. Nat. Commun. 3, 1028 (2012)

    Article  ADS  Google Scholar 

  • Qian, W., Spence, J.C.H., Zuo, J.M.: Transmission low-energy electron diffraction (TLEED) and its application to the low-voltage point-projection micnscok. Acta Crystallogr. Sect. A49, 436 (1993)

    Article  Google Scholar 

  • Rau, W.D., Schwander, P., Baumann, F.H., Höppner, W., Ourmazd, A.: Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614 (1999)

    Article  ADS  Google Scholar 

  • Ravikumar, V., Rodrigues, R.P., Dravid, V.P.: Direct imaging of spatially varying potential and charge across internal interfaces in solids. Phys. Rev. Lett. 75, 4063 (1995)

    Article  ADS  Google Scholar 

  • Ravikumar, V., Rodrigues, R.P., Dravid, V.P.: Space-charge distribution across internal interfaces in electroceramics using electron holography: II, Doped grain boundaries. J. Am. Ceram. Soc. 80, 1131 (1997a)

    Article  Google Scholar 

  • Ravikumar, V., Rodrigues, R.P., Dravid, V.P.: Space-charge distribution across internal interfaces in electroceramics using electron holography: I, Pristine grain boundaries. J. Am. Ceram. Soc. 80, 1117 (1997b)

    Article  Google Scholar 

  • Reimer, L.: Springer Series in Optical Sciences, p. 36. Springer, Berlin (1984)

    Google Scholar 

  • Reimer, L., Kohl, H.: Transmission Electron Microscopy: Physics of Image Formation, 5th edn. Springer Science+Business Media, LLC, 233 Spring Street, New York, USA (2008)

    Google Scholar 

  • Romming, N., Hanneken, C., Menzel, M., Bickel, E.J., Wolter, B., Bergmann, V.K., Kubetzka, A., Wiesendanger, R.: Writing and deleting single magnetic skyrmions. Science 341, 636 (2013)

    Article  ADS  Google Scholar 

  • Rose, H.: Inhomogeneous wien filter as a corrector compensating for the chromatic and spherical-aberration of low-voltage electron-microscopes. Optik 84, 91 (1990)

    Google Scholar 

  • Rose, H.: Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251 (1997)

    Article  Google Scholar 

  • Rose, H., Preikszas, D.: Outline of a versatile corrected LEEM. Optik 92, 31 (1992)

    Google Scholar 

  • Rosenauer, A., Gerthsen, D.: Atomic scale strain and composition evaluation from high-resolution transmission electron microscopy images. In: Hawkes, P.W. (ed.) Advances in imaging and electron physics, p. 121. Academic Press, San Diego (1999)

    Google Scholar 

  • Saito, K., Park, H.S., Shindo, D., Yoshizawa, Y.: J. Magn. Magn. Mater. 305, 304 (2006)

    Article  ADS  Google Scholar 

  • Sasaki, H., Yamamoto, K., Hirayama, T., Ootomo, S., Matsuda, T., Iwase, F., Nakasaki, R., Ishii, H.: Mapping of dopant concentration in a GaAs semiconductor by off-axis phase-shifting electron holography. Appl. Phys. Lett. 89, 244101 (2006)

    Article  ADS  Google Scholar 

  • Sasaki, H., Ootomo, S., Matsuda, T., Ishii, H.: Observation of carrier distribution in compound semiconductors using off-axis electron holography. Furukawa Rev. 34, 24 (2008)

    Google Scholar 

  • Saxton, W.O.: Proceedings 11th International Congress on Electron Microscopy, Kyoto, p. 1 (1986)

    Google Scholar 

  • Saxton, W.O.: What is the focus variation method-is it new-is it direct. Ultramicroscopy 55, 171 (1994)

    Article  Google Scholar 

  • Sayre, D.: The squaring method: a new method for phase determination. Acta Cryst. B5, 60–65 (1952)

    Article  Google Scholar 

  • Scherzer, O.: The theoretical resolution limit of the electron microscope. J. Appl. Phys., 20 (1949)

    Google Scholar 

  • Schiske, P.: Proceedings 4th Europegn Conference on Electron Microscopy Rome, p. 145 (1968)

    Google Scholar 

  • Schiske, P.: Image reconstruction by means of focus series. J. Microsc. Oxf. 207, 154 (2002)

    Article  MathSciNet  Google Scholar 

  • Schofield, M.A., Beleggia, M., Zhu, Y., Guth, K., Jooss, C.: Direct evidence for negative grain boundary potential in Ca-doped and undoped YBa\(_2\) Cu\(_3\)O\(_7\)-x. Phys. Rev. Lett. 92, 195502 (2004)

    Article  ADS  Google Scholar 

  • Schofield, M.A., Beleggia, M., Lau, J.W., Zhu, Y.: Characterization of the JEM-2100F-LM TEM for electron holography and magnetic imaging. JEOL News 42, 1 (2007)

    Google Scholar 

  • Schwander, P., Rau, W.D., Ourmazd, A.: Composition mapping at high resolution. J. Microsc. 190, 171 (1998)

    Article  Google Scholar 

  • Seitz, H., Ahlborn, K., Seibt, M., Schröter, W.: Sensitivity limits of strain mapping procedures using high-resolution electron microscopy. J. Microsc. 190, 184 (1998)

    Article  Google Scholar 

  • Seki, S., Yu, X.Z., Ishiwata, S., Tokura, Y.: Observation of skyrmions in a multiferroic material. Science 336, 198 (2012)

    Article  ADS  Google Scholar 

  • Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press (1949)

    Google Scholar 

  • Shindo, D., Park, Y.G., Yoshizawa, Y.: Magnetic domain structures of Fe\(_{73.5}\)Cu\(_1\)Nb\(_3\)Si\(_{13.5}\)B\(_9\) films studied by electron holography. J. Magn. Magn. Mater. 238, 101 (2002)

    Article  ADS  Google Scholar 

  • Shindo, D., Park, Y.G., Gao, Y.H., Park, H.S.: Electron holography of Fe-based nanocrystalline magnetic materials. J. Appl. Phys. 95, 6521 (2004)

    Article  ADS  Google Scholar 

  • Sickmann, J., Formánek, P., Linck, M., Lichte, H.: Extended field of view for medium resolution electron holography at Philips CM200 microscope. EMC 1, 277 (2008)

    Google Scholar 

  • Sickmann, J., Formánek, P., Linck, M., Muehle, U., Lichte, H.: Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution. Ultramicroscopy 111, 290 (2011)

    Article  Google Scholar 

  • Simon, P., Tang, Z., Carrillo-Cabrera, W., Chiong, K., Böhme, B., Baitinger, M., Lichte, H., Grin, Y., Guloy, A.M.: Synthesis and electron holography studies of single crystalline nanostructures of clathrate-ii phases K\(_{x}\)Ge\(_{136}\) and Na\(_{x}\)Si\(_{136}\). J. Am. Chem. Soc. 133, 7596 (2018)

    Article  Google Scholar 

  • Simpson, E.T., Kasama, T., Pósfai, M., Buseck, P.R., Harrison, R.J., Dunin-Borkowski, R.E.: Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography. J. Phys. Conf. Ser. 17, 108 (2005)

    Article  ADS  Google Scholar 

  • Sinkler, W., Marks, L.D.: Dynamical direct methods for everyone. Ultramicroscopy 75, 251 (1999)

    Article  Google Scholar 

  • Skyrme, T.H.R.: Particle states of a quantized meson field. Proc. R. Soc. A. 262, 237 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Skyrme, T.H.R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  • Smith, D.J., Cullen, D.A., Zhou, L., McCartney, M.R.: Application of TEM imaging, analysis and electron holography to III-nitride HEMT devices. Microelectron. Reliab. 50, 1514 (2010)

    Article  Google Scholar 

  • Spence, J.C.H.: High-Resolution Electron Microscopy, 3rd edn. Oxford University Press, Oxford (2003)

    Google Scholar 

  • Spence, J.C.H., Zuo, J.M.: Electron microdiffraction. Plenum Press, New York (1992)

    Book  Google Scholar 

  • Spence, J.C.H., Cowley, J.M., Zuo, J.M.: Comment on "Electron holographic study of ferroelectric domain walls". Appl. Phys. Lett. 62, 2446 (1993)

    Article  ADS  Google Scholar 

  • Su, D.S., Jacob, T., Hansen, T.W., Wang, D., Schlogl, R., Freitag, B., Kujawa, S.: Surface chemistry of Ag particles: identification of oxide species by aberration-corrected TEM and by DFT calculations. Angew. Chem. Int. Edit. 47, 5005 (2008)

    Article  Google Scholar 

  • Tanaka, M., Saito, R., Sekii, H.: Point-group determination by convergent-beam electron diffraction. Acta Crystallogr. Sect. A 39 (1983)

    Google Scholar 

  • Tang, C.Y., Li, F.H.: Restoring atomic configuration at interfaces by image deconvolution. J. Electron Microsc. 54, 445 (2005)

    Google Scholar 

  • Tang, C.Y., Li, F.H., Wang, R., Zou, J., Zheng, X.H., Liang, J.W.: Atomic configurations of dislocation core and twin boundaries in 3C-SiC studied by high-resolution electron microscopy. Phys. Rev. B. 75, 184103 (2007)

    Article  ADS  Google Scholar 

  • Tang, D., Li, F.H.: A method of image-restoration for pseudo-weak-phase objects. Ultramicroscopy 25, 61 (1988)

    Article  Google Scholar 

  • Tang, D., Teng, C.M., Zou, J., Li, F.H.: Pseudo-weak-phase-object approximation in high-resolution electron-microscopy. II. Feasibility of directly observing Li+. Acta Cryst. B. 42, 340 (1986)

    Google Scholar 

  • Tao, J., Niebieskikwiat, D., Varela, M., Luo, W., Schofield, M.A., Zhu, Y., Salamon, M.B., Zuo, J.M., Pantelides, S.T., Pennycook, S.J.: Direct imaging of nanoscale phase separation in La\(_{0.55}\)Ca\(_{0.45}\)MnO\(_3\): relationship to colossal magnetoresistance. Phys. Rev. Lett. 103, 097202 (2009)

    Article  ADS  Google Scholar 

  • Telesnin, R.V., Ilycheva, E.N., Kanavina, N.G., Osukhovskii, V.E., Shishkov, A.G.: Phys. Stat. Sol. 34, 443 (1969)

    Article  ADS  Google Scholar 

  • Thon, T.: Phase contrast electron microscopy. In: Valdrè, U. (ed.) Electron Microscopy in Material Science, p. 570. Academic Press, New York and London (1971)

    Google Scholar 

  • Thust, A., Coene, W.M.J., deBeeck, M.O., VanDyck, D.: Focal-series reconstruction in HRTEM: simulation studies on non-periodic objects. Ultramicroscopy 64, 211 (1996a)

    Article  Google Scholar 

  • Thust, A., Overwijk, M.H.F., Coene, W.M.J., Lentzen, M.: Numerical correction of lens aberrations in phase-retrieval HRTEM. Ultramicroscopy 64, 249 (1996b)

    Article  Google Scholar 

  • Thust, A., Lentzen, M., Urban, K.: Nonlinear reconstruction of the exit plane-wave function from periodic high-resolution electron-microscopy images. Ultramicroscopy 53, 101 (1994)

    Article  Google Scholar 

  • Tian, H.F., Sun, J.R., Lü, H.B., Jin, K.J., Yang, H.X., Yu, H.C., Li, J.Q.: Electrostatic potential in manganite-based heterojunctions by electron holography. Appl. Phys. Lett. 87, 164102 (2005a)

    Article  ADS  Google Scholar 

  • Tian, H.F., Yu, H.C., Zhu, X.H., Wang, Y.G., Zheng, D.N., Yang, H.X., Li, J.Q.: Off-axis electron holography and microstructure of Ba\(_{0.5}\)Sr\(_{0.5}\)TiO\(_3\) thin films on LaAlO\(_3\). Phys. Rev. B. 71, 115419 (2005b)

    Article  ADS  Google Scholar 

  • Tonomura, A.: Electron Holography, 2nd edn. Springer Series. Springer, Berlin (1999). Opt. Sci. 70

    Google Scholar 

  • Tonomura, A.: Direct observatian of thithertoun observable quantum phenomena by using electrons. PNAS 102, 14952 (2005)

    Article  ADS  Google Scholar 

  • Tonomura, A., Matsuda, T., Tanabe, H., Osakabe, N., Endo, J., Fukuhara, A., Shinagawa, K., Fujiwara, H.: Electron holography technique for investigating think ferromagnetic films. Phys. Rev. Lett. 25, 6799 (1982)

    ADS  Google Scholar 

  • Tonomura, A., Matsuda, T., Endo, J., Arii, T., Mihama, K.: Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution. Phys. Rev. B. 34, 3397 (1986a)

    Article  ADS  Google Scholar 

  • Tonomura, A., Osakabe, N., Matsuda, M., Kawasaki, T., Endo, J., Yano, S., Yamada, H.: Evidence for the Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792 (1986b)

    Article  ADS  Google Scholar 

  • Tonomura, A., Kasai, H., Kaminuma, O., Matsuda, T., Harada, K., Nakayama, Y., Shomoyama, J., Kishio, K., Hanaguri, T., Kitazawa, K., Sasae, M., Okayasu, S.: Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature 412, 620 (2001)

    Article  ADS  Google Scholar 

  • Tonomura, A., Yu, X.Z., Yanagisawa, K., Matsuda, T., Onose, Y., Kanazawa, N., Park, S.H., Tokura, Y.: Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. Nano Lett. 12, 1673 (2012)

    Article  ADS  Google Scholar 

  • Tripp, S.L., Dunin-Borkowski, R.E., Wei, A.: Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. Int. Ed. 42, 5591 (2003)

    Article  Google Scholar 

  • Tsuno, K., Inoue, M.: Double gap objective lens for observing magnetic domains by means of differential phase contrast electron microscopy. Optik 67, 363 (1984)

    Google Scholar 

  • Tsuno, K., Taoka, T.: Magnetic-field-free objective lens around a specimen for observing fine structure of ferromagnetic materials in a transmission electron microscope. J. Appl. Phys. 22, 1041 (1983)

    Article  Google Scholar 

  • Twitchett, C., Dunin-Borkowski, R.E., Midgley, P.A.: Quantitative electron holography of biased semiconductor devices. Phys. Rev. Lett. 88, 238302 (2002)

    Article  ADS  Google Scholar 

  • Twitchett-Harrison, C., Yates, T.J.V., Dunin-Borkowski, R.E., Newcomb, S.B., Midgley, P.A.: Three-dimensional electrostatic potential of a Si p-n junction revealed using tomographic electron holography. J. Phys. Conf. Ser. 26, 29 (2006)

    Article  ADS  Google Scholar 

  • Twitchett-Harrison, A.C., Yates, T.J.V., Newcomb, S.B., Dunin-Borkowski, R.E., Midgley, P.A.: High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett. 7, 2020 (2007)

    Article  ADS  Google Scholar 

  • Twitchett-Harrison, C., Yates, T.J.V., Dunin-Borkowski, R.E., Midgley, P.A.: Quantitative electron holographic tomography for the 3D characterisation of semiconductor device structures. Ultramicroscopy 108, 1401 (2008)

    Article  Google Scholar 

  • Uhlig, T., Heumann, M., Zweck, J.: Development of a specimen holder for in situ generation of pure in-plane magnetic fields in a transmission electron microscope. Ultramicroscopy 94, 193 (2003)

    Article  Google Scholar 

  • Unwin, P.N.T., Henderson, R.: Molecular-structure determination by electron-microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425 (1975)

    Article  Google Scholar 

  • Van Dyck, D., de Beeck, M.O.: Focus variation electron holography. In: Völkl, E., Allard, L.F., Joy, D.C. (eds.) Introduction to Electron Holography. Kluwer Academic/Plenum Publishers, New York (1999)

    Google Scholar 

  • Van Dyck, D., Debeeck, M.O., Coene, W.: A new approach to object wave-function reconstruction in electron-microscopy. Optik 93, 103 (1993)

    Google Scholar 

  • Vincent, R., Bird, D.M., Steeds, J.W.: Structure of AuGeAs determined by convergent-beam electron diffraction. I: derivation of basic structure. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 50, 745 (1984)

    Google Scholar 

  • Voelkl, E., Tang, D.: Approaching routine 2\(\pi \)/1000 phase resolution for off-axis type holography. Ultramicroscopy 110, 447 (2010)

    Article  Google Scholar 

  • Völkl, E., Allard, L.F., Joy, D.C.: Late Pleistocene Megafaunal Extinctions: A European Perspective. Kluwer Academic/Plenum Publishers, New York (1999)

    Google Scholar 

  • Volkov, V.V., Crew, D.C., Zhu, Y., Lewis, L.H.: Magnetic field calibration of a transmission electron microscope using a permanent magnet material. Rev. Scient. Instr. 73, 2298 (2002)

    Article  ADS  Google Scholar 

  • Wan, Z.H., Liu, Y.D., Fu, Z.Q., Li, Y., Cheng, T.Z., Li, F.H., Fan, H.F.: Visual computing in electron crystallography. Z. Kristallogr. 218, 308 (2003)

    Google Scholar 

  • Wang, R.M.: Reconstruction of electron exit waves: basic theory and applications. J. Chin. Electron Microsc. Soc. (1) (2006)

    Google Scholar 

  • Wang, Y.G., Dravid, V.P.: Determination of electrostatic characteristics at a 24 degree, [001] tilt grain boundary in a SrTiO\(_3\) bicrystal by electron holography. Phil. Mag. Lett. 82, 425 (2002)

    Article  ADS  Google Scholar 

  • Wang, D., Chen, H., Li, F.H., Kawasaki, K., Oikawa, T.: Atomic configuration in core structure of lomer dislocation in Si\(_{0.76}\)Ge\(_{0.24}\)/Si. Ultramicroscopy 93, 139 (2002)

    Article  Google Scholar 

  • Wang, H.B., Jiang, H., Li, F.H., Che, G.C., Tang, D.: A study on the position of boron atoms in (Y\(_{0.6}\)Ca\(_{0.4})\)(SrBa)(Cu \(_{2.5}\)B \(_{0.5})\)O\(_{7}\)- delta. Acta Cryst. A. A58, 494 (2002)

    Google Scholar 

  • Wang, D., Zou, J., He, W.Z., Chen, H., Li, F.H., Kawasaki, K., Oikawa, T.: Determination of a misfit dislocation complex in SiGe/Si heterostructures by image deconvolution technique in HREM. Ultramicroscopy 98, 259 (2004a)

    Article  Google Scholar 

  • Wang, H.B., Wang, Y.M., Li, F.H.: A further discussion on the peculiarity of maximum entropy image deconvolution in HREM. Ultramicroscopy 99, 165 (2004b)

    Article  Google Scholar 

  • Wang, Y.M., Wang, H.B., Li, F.H., Jia, L.S., Chen, X.L.: Maximum entropy image deconvolution applied to structure determination for crystal Nd\(_{1.85}\)Ce\(_{0.15}\)CuO\(_{4-\updelta }\). Micron 36, 393 (2005)

    Article  Google Scholar 

  • Wang, H.Y., Dai, X.F., Wang, Y.G., Duan, X.F., Wu, G.H.: In situ observation of magnetic domain structure in Co\(_{50}\)Ni\(_{50}\)FeGa\(_{59}\) alloy under the applied magnetic field. Mater. Trans. 48, 2255 (2007)

    Article  Google Scholar 

  • Wang, R.M., Dmitrieva, O., Farle, M., Dumpich, G., Ye, H.Q., Poppa, H., Kilaas, R., Kisielowski, C.: Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 100, 017205 (2008a)

    Article  ADS  Google Scholar 

  • Wang, S.X., Li, G.X.: Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans. Magn. 44, 1687 (2008b)

    Article  ADS  Google Scholar 

  • Wang, Y.M., Wan, W., Wang, R., Li, F.H., Che, G.C.: Atomic configurations of twin boundaries and twinning dislocation in superconductor Y\(_{0.6}\)Na\(_{0.4}\) Ba\(_{2}\)Cu\(_{2.7}\)Zn\(_{0.3}\)O\(_{7-delta}\). Philos. Mag. Lett. 88, 481 (2008c)

    Article  ADS  Google Scholar 

  • Wang, Z., Yao, Y., He, X., Yang, Y., Gu, L., Wang, Y., Duan, X.: Invetigation of strain and thin film relaxation in Gexsirx/si Strained-layer superlattice by dark-fied electron holography. Mater. Trans. 53, 2019 (2012)

    Article  Google Scholar 

  • Wanner, M., Bach, D., Gerthsena, D., Wernerb, R., Tesche, B.: Electron holography of thin amorphous carbon films: measurement of the mean inner potential and a thickness-independent phase shift. Ultramicroscopy 106, 34 (2006)

    Article  Google Scholar 

  • Wei, Q., Wu, Z., Sun, K., Ponce, F.A., Hertkorn, J., Scholz, F.: Evidence of two-dimensional hole gas in p-type AlGaN/AlN/GaN heterostructures. Appl. Phys. Express 2, 121001 (2009)

    Article  ADS  Google Scholar 

  • Wei, Q.Y., Wu, Z.H., Ponce, F.A., Hertkorn, J., Scholz, F.: Polarization effects in 2-DEG and 2-DHG AlGaN/AlN/GaN multi-heterostructures measured by electron holography. Phys. Status solidi B 247, 1722 (2010)

    Article  ADS  Google Scholar 

  • Weickenmeier, A., Kohl, H.: Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallogr. Sect. A 47, 590 (1991)

    Article  Google Scholar 

  • Wen, C., Wang, Y.M., Wan, W., Li, F.H., Liang, J.W., Zou, J.: Nature of interfacial defects and their roles in strain relaxation at highly lattice mismatched 3C-SiC/Si (001) interface. J. Appl. Phys. 106, 073522 (2009)

    Article  ADS  Google Scholar 

  • Wilson, A.J.C.: The probability distribution of x-ray intensities. Acta Crystallogr. 2, 318 (1949)

    Article  MathSciNet  Google Scholar 

  • Wolf, D., Lubk, A., Lichte, H., Friedrich, H.: Towards automated electron holographic tomography for 3D mapping of electrostatic potentials. Ultramicroscopy 110, 390 (2010)

    Article  Google Scholar 

  • Wolf, D., Lichte, H., Pozzi, G., Prete, P., Lovergine, N.: Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires. Appl. Phys. Lett. 98, 264103 (2011)

    Article  ADS  Google Scholar 

  • Woolfson, M.M.: An improvement of the heavy-atom method of solving crystal structures. Acta Cryst. A 9, 804 (1956)

    Article  Google Scholar 

  • Woolfson, M.M., Fan, H.F.: Physical and Non-Physical Methods of Solving Crystal Structure, p. 221. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  • Wu, Z.H., Stevens, M., Ponce, F.A., Lee, W., Ryou, J.H., Yoo, D., Dupuis, R.D.: Mapping the electrostatic potential across AlGaN/AlN/GaN heterostructures using electron holography. Appl. Phys. Lett. 90, 032101 (2007)

    Article  ADS  Google Scholar 

  • Xia, W.X., Tohara, K., Murakami, Y., Shindo, D., Ito, T., Iwasaki, Y., Tachibana, J.: Observation of magnetization of obliquely evaporated Co-CoO magnetic recording tape. IEEE Trans. Magn. 42, 3252 (2006)

    Article  ADS  Google Scholar 

  • Xu, Q.Y., Wang, Y., Wang, Y.G., Du, X.L., Xue, Q.K., Zhang, Z.: Polarity determination of ZnO thin films by electron holography. Appl. Phys. Lett. 84, 2067 (2004)

    Article  ADS  Google Scholar 

  • Xu, X., Beckman, S.P., Specht, P., Weber, E.R., Chrzan, D.C., Erni, R.P., Arslan, I., Browning, N., Bleloch, A., Kisielowski, C.: Distortion and segregation in a dislocation core region at atomic resolution. Phys. Rev. Lett. 95, 145501 (2005)

    Article  ADS  Google Scholar 

  • Yamamoto, K., Kawajiri, I., Tanji, T., Hibino, M., Hirayama, T.: High precision phase-shifting electron holography. J. Electron Micros. 49, 31 (2000)

    Article  Google Scholar 

  • Yamamoto, K., Hirayama, T., Tanji, T., Hibino, M.: Evaluation of high-precision phase-shift electron holography by using hologram simulation. Surf. Interface Anal. 35, 60 (2003)

    Article  Google Scholar 

  • Yamamoto, K., Hirayama, T., Tanji, T.: Off-axis electron holography without Fresnel fringes. Ultramicroscopy 101, 265 (2004)

    Article  Google Scholar 

  • Yamamoto, K., Sugwara, Y., McCartney, M.R., Smith, D.J.: Phase-shifting electron holography for atomic image reconstruction. Jpn. Soc. Microsc. 59, S81 (2010a)

    Google Scholar 

  • Yamamoto, K., Iriyama, Y., Asaka, T., Hirayama, T., Fujita, H., Fisher, C.A.J., Nonaka, K., Sugita, Y., Ogumi, Z.: Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed. 49, 4414 (2010b)

    Article  Google Scholar 

  • Yamamoto, K., Hogg, C.R., Yamamuro, S., Hirayama, T., Majetich, S.A.: Dipolar ferromagnetic phase transition in Fe\(_{3}\)O\(_{4}\) nanoparticle arrays observed by Lorentz microscopy and electron holography. Appl. Phys. Lett. 98, 072509 (2011)

    Article  ADS  Google Scholar 

  • Yang, S.X., Li, F.H.: Image deconvolution for protein crystals. Ultramicroscopy 85, 51 (2000)

    Article  Google Scholar 

  • Yang, Y., Wang, W.X., Yan, Y., Liu, H.F., Naganuma, H., Sakul, T.S., Han, X.F., Yu, R.C.: Chemical diffusion: another factor offecting the magnetoresistance ratio in Ta/CoFeB/MgO/CoFeB/Ta magnetic tunnel junction. Appl. Phys Lett. 101, 012406 (2012a)

    Article  ADS  Google Scholar 

  • Yang, Y., Niu, N., Li, C., Yao, Y., Piao, G., Yu, R.C.: Electron holography characterization as a method for measurements of diameter and mean inner potential of hollow wamomaterials. Nanoscale 4, 7460 (2012b)

    Article  ADS  Google Scholar 

  • Yao, Y., Yang, Y., Duan, X.F., Wang, Y.G., Yu, R.C., Xu, Q.X.: Electron holography characterization of the electrostatic potential of thin high-\(\kappa \) dielectric film embedded in gate stack. Appl. Phys. Lett. 99, 163506 (2011)

    Article  ADS  Google Scholar 

  • Yao, Y., Li, C., Huo, Z.L., Liu, M., Zhu, C.X., Gu, C.Z., Duan, X.F., Wang, Y.G., Yu, R.C.: In situ electran holography study of charge distribution in high-kappa charge-trapping memory. Nat. Comm. 4, 2764 (2013)

    Article  ADS  Google Scholar 

  • Yi, G., Nicholson, W.A.P., Lim, C.K., Chapman, J.N., Mcvitie, S., Wilkinson, C.D.W.: A new design of specimen stage for in situ magnetising experiments in the transmission electron microscope. Ultramicroscopy 99, 65 (2004)

    Article  Google Scholar 

  • Yoo, J.H., Murakami, Y., Shindo, D., Atou, T., Kikuchi, M.: Behavior of magnetic domains in La\(_{0.46}\)Sr\(_{0.54}\)MnO\(_{3}\) during the ferromagnetic phase transformation studied by electron holography. Phys. Rev. B. 66, 212406 (2002)

    Article  ADS  Google Scholar 

  • Yoshida, T., Matsuda, T., Fukuhara, A., Tonomura, A.: Electron holography observation of flux-line dynamics. In: Proceedings of Boston: 50th Meeting of Electron Microscopy Society of America (1992)

    Google Scholar 

  • Yoshida, H., Kohno, H., Ichikawa, S., Akita, T., Takeda, S.: Inner potential fluctuation in SiC nanowires with modulated interior structure. Mater. Lett. 61, 3134 (2007)

    Article  Google Scholar 

  • Yu, X.Z., Onose, Y., Kanazawa, N., Park, J.H., Han, J.H., Matsui, Y., Nagaosa, N., Tokura, Y.: Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010)

    Article  ADS  Google Scholar 

  • Yu, X.Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W.Z., Ishiwata, S., Matsui, Y., Tokura, Y.: Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106 (2011)

    Article  ADS  Google Scholar 

  • Yu, X.Z., Kanazawa, N., Zhang, W.Z., Nagai, T., Hara, T.T., Kimoto, K., Matsui, Y., Onose, Y., Tokura, Y.: Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012)

    Article  ADS  Google Scholar 

  • Yu, X.Z., DeGrave, J.P., Hara, Y., Hara, T., Jin, S., Tokura, Y.: Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. Nano. Lett. 13, 3755 (2013)

    Article  ADS  Google Scholar 

  • Yu, X.Z., Tokunaga, Y., Kaneko, Y., Zhang, W.Z., Kimoto, K., Matsui, Y., Taguchi, Y., Tokura, Y.: Biskyrmion states and their current-driven motion in a layered manganite. Nat. Commun. 5, 3198 (2014)

    Article  ADS  Google Scholar 

  • Yuzi, G., Yuzo, O.: In situ lorentz microscopy observation of displaced chain walls in permalloy. J. Phys. Soc. Jpn. 15, 535 (1960)

    Article  Google Scholar 

  • Zhang, X., Hashimoto, T., Joy, D.C.: Electron holographic study of ferroelectric domain walls. Appl. Phys. Lett. 60, 784 (1992)

    Article  ADS  Google Scholar 

  • Zhang, X., Joy, D.C., Zhang, Y., Hashimoto, T., Allard, L., Nolan, T.A.: Electron holography techniques for study of ferroelectric domain walls. Ultramicroscopy 51, 21 (1993)

    Article  Google Scholar 

  • Zheng, H., Cao, A., Weinberger, C.R., Huang, J.Y., Du, K., Wang, J., Ma, Y., Xia, Y., Mao, S.X.: Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 1, 144 (2010)

    Article  ADS  Google Scholar 

  • Zhou, L., Cullen, D.A., Smith, D.J., McCartney, M.R., Mouti, A., Gonschorek, M., Feltin, E., Carlin, J.F., Grandjean, N.: Polarization field mapping of Al\(_{0.85}\)In\(_{0.15}\)N/AlN/GaN heterostructure. Appl. Phys. Lett. 94, 121909 (2009)

    Article  ADS  Google Scholar 

  • Zhou, L., Smith, D.J., McCartney, M., Xu, T., Moustakas, T.D.: Measurement of electric field across individual wurtzite GaN quantum dots using electron holography. Appl. Phys. Lett. 99, 101905 (2011)

    Article  ADS  Google Scholar 

  • Zhu, Y., Inada, H., Nakamura, K., Wall, J.: Imaging single atoms using secondary electrons with an aberration-corrected electron microscope. Nat. Mater. 8, 808 (2009)

    Article  ADS  Google Scholar 

  • Zuo, J.M.: Automated structure-factor refinement from convergent-beam electron diffraction patterns. Acta Crystallogr. Sect. A 49, 429 (1993)

    Article  Google Scholar 

  • Zou, X., Sundberg, M., Larine, M., Hovmoller, S.: Structure projection retrieval by image processing of HREM images taken under non-optimum defocus conditions. Ultramicroscopy 62, 103 (1996)

    Article  Google Scholar 

  • Zuo, J.M., Tao, J.: Scanning Transmission Electron Microscopy: Imaging and Analysis. Springer, London (2010)

    Google Scholar 

  • Zuo, J.M., O’Keeffe, M., Rez, P., Spence, J.C.H.: Charge density of MgO: implications of precise new measurements for theory. Phys. Rev. Lett. 78, 4777 (1997a)

    Article  ADS  Google Scholar 

  • Zuo, J.M., Blaha, P., Schwarz, K.: The theoretical charge density of silicon: experimental testing of exchange and correlation potentials. J. Phys. Condens. Matter 9, 7541 (1997b)

    Article  ADS  Google Scholar 

  • Zuo, J.M., O’Keeffe, M., Rez, P., Spence, J.C.H.: Direct observation of d-orbital holes and Cu-Cu bonding in Cu\(_2\)O. Nature 401, 49 (1999)

    Article  ADS  Google Scholar 

  • Zuo, J.M., Gao, M., Tao, J., Li, B.Q., Twesten, R., Petrov, I.: Coherent nano-area electron diffraction. Microsc. Res. Tech. 64, 347 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongming Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Peking University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, R. et al. (2018). Transmission Electron Microscopy. In: Wang, R., Wang, C., Zhang, H., Tao, J., Bai, X. (eds) Progress in Nanoscale Characterization and Manipulation. Springer Tracts in Modern Physics, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-13-0454-5_3

Download citation

Publish with us

Policies and ethics