Skip to main content

Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Biomimetic Medical Materials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1064))

Abstract

The fibrin matrix is fundamentally formed by the polymerization of fibrinogen and thrombin in blood plasma. It is a natural biopolymeric material to widely investigate for various tissue regenerations due to good biocompatibility, rapid biodegradability, and easy fabrication. In particular, the conjugated bioactive molecules with fibrinogen can promote tissue morphogenesis or maturation after cell adhesion on the matrices, migration, proliferation, or differentiation. Using these physiological properties with cell-material interactions, the fibrin matrices have been utilized in tissue engineering applications such as skin tissue, cardiovascular tissue, musculoskeletal tissue, or nerve tissue in preclinical and clinical situations. This chapter demonstrates the fibrin material and its tissue engineering applications as the therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14:199–215

    Article  CAS  PubMed  Google Scholar 

  • Albala DM, Lawson JH (2006) Recent clinical and investigational applications of fibrin sealant in selected surgical specialties. J Am Coll Surg 202(4):685–697

    Article  PubMed  Google Scholar 

  • Andree C, Munder BI, Behrendt P, Hellmann S, Audretsch W, Voigt M et al (2008) Improved safety of autologous breast reconstruction surgery by stabilisation of microsurgical vessel anastomoses using fibrin sealant in 349 free DIEP or fascia-muscle-sparing (fms)-TRAM flaps: a two-centre study. Breast 17(5):492–498

    Article  PubMed  Google Scholar 

  • Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari A, Rivkin R, Frishman M, Gaberman E, Levdansky L, Gorodetsky R (2009) Isolation and implantation of bone marrow-derived mesenchymal stem cells with fibrin micro beads to repair a critical-size bone defect in mice. Tissue Eng A 15(9):2537–2546

    Article  CAS  Google Scholar 

  • Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24(14):2497–2502

    Article  CAS  PubMed  Google Scholar 

  • Black LD 3rd, Meyers JD, Weinbaum JS, Shvelidze YA, Tranquillo RT (2009) Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng A 15(10):3099–3108

    Article  CAS  Google Scholar 

  • Breen A, O'Brien T, Pandit A (2009a) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng Part B Rev 15:201–214

    Article  CAS  PubMed  Google Scholar 

  • Breen A, O’Brien T, Pandit A (2009b) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng Part B Rev 15(2):201–214

    Article  CAS  PubMed  Google Scholar 

  • Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10(4):1502–1514

    Article  CAS  PubMed  Google Scholar 

  • Buchta C, Hedrich HC, Macher M, Hocker P, Redl H (2005) Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel. Biomaterials 26(31):6233–6241

    Article  CAS  PubMed  Google Scholar 

  • Camci-Unal G, Annabi N, Dokmeci MR, Liao R, Khademhosseini A (2014) Hydrogels for cardiac tissue engineering. NPG Asia Mater 6:e99

    Article  CAS  Google Scholar 

  • Chang WG, Niklason LE (2017) A short discourse on vascular tissue engineering. NPJ Regen Med 2

    Google Scholar 

  • Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12)

    Article  PubMed Central  CAS  Google Scholar 

  • Chernousov MA, Carey DJ (2003) alphaVbeta8 integrin is a Schwann cell receptor for fibrin. Exp Cell Res 291(2):514–524

    Article  CAS  PubMed  Google Scholar 

  • Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G et al (2000) Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 20:1354–1361

    Article  CAS  PubMed  Google Scholar 

  • Connelly JT, Vanderploeg EJ, Levenston ME (2004) The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology 41(3–4):377–387

    CAS  PubMed  Google Scholar 

  • Cummings CL, Gawlitta D, Nerem RM, Stegemann JP (2004) Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25(17):3699–3706

    Article  CAS  PubMed  Google Scholar 

  • Davis HE, Miller SL, Case EM, Leach JK (2011) Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater 7:691–699

    Article  CAS  PubMed  Google Scholar 

  • Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M et al (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312

    Article  CAS  PubMed  Google Scholar 

  • Flanagan TC, Cornelissen C, Koch S, Tschoeke B, Sachweh JS, Schmitz-Rode T et al (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28(23):3388–3397

    Article  CAS  PubMed  Google Scholar 

  • Gebara MM, Sayre MH, Corden JL (1997) Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J Cell Biochem 64(3):390–402

    Article  CAS  PubMed  Google Scholar 

  • Grassl ED, Oegema TR, Tranquillo RT (2003) A fibrin-based arterial media equivalent. J Biomed Mater Res A 66(3):550–561

    Article  CAS  PubMed  Google Scholar 

  • Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20(12):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall H (2007) Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Curr Pharm Des 13(35):3597–3607

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Hubbell JA (2004) Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGF-R2. Microvasc Res 68(3):169–178

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Djonov V, Ehrbar M, Hoechli M, Hubbell JA (2004) Heterophilic interactions between cell adhesion molecule L1 and alphavbeta3-integrin induce HUVEC process extension in vitro and angiogenesis in vivo. Angiogenesis 7(3):213–223

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R et al (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 2(11):1500122

    Article  CAS  Google Scholar 

  • Herbert CB, Nagaswami C, Bittner GD, Hubbell JA, Weisel JW (1998) Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels. J Biomed Mater Res 40(4):551–559

    Article  CAS  PubMed  Google Scholar 

  • Horak M, Handl M, Podskubka A, Kana R, Adler J, Povysil C (2014) Comparison of the cellular composition of two different chondrocyte-seeded biomaterials and the results of their transplantation in humans. Folia Biol 60(1):1–9

    CAS  Google Scholar 

  • Huang S, Fu X (2010) Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 142(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Khait L, Birla RK (2007) Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J Biomed Mater Res A 80((3):719–731

    Article  CAS  Google Scholar 

  • Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5):551–558

    Article  CAS  PubMed  Google Scholar 

  • Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10

    Article  CAS  PubMed  Google Scholar 

  • Jimenez PA, Jimenez SE (2004) Tissue and cellular approaches to wound repair. Am J Surg 187(5A):56S–64S

    Article  CAS  PubMed  Google Scholar 

  • Johnson PJ, Parker SR, Sakiyama-Elbert SE (2010) Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res A 92((1):152–163

    Article  CAS  Google Scholar 

  • Johnson PJ, Wood MD, Moore AM, Mackinnon SE (2013) Tissue engineered constructs for peripheral nerve surgery. Eur Surg 45(3). https://doi.org/10.1007/s10353-013-0205-0

    Article  Google Scholar 

  • Koob S, Torio-Padron N, Stark GB, Hannig C, Stankovic Z, Finkenzeller G (2011) Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng A 17(3–4):311–321

    Article  Google Scholar 

  • Laurens N, Koolwijk P, de Maat MP (2006a) Fibrin structure and wound healing. J Thromb Haemost 4:932–939

    Article  CAS  PubMed  Google Scholar 

  • Laurens N, Koolwijk P, de Maat MP (2006b) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939

    Article  CAS  PubMed  Google Scholar 

  • Lee F, Kurisawa M (2013) Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater 9(2):5143–5152

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  PubMed  Google Scholar 

  • Lee YB, Polio S, Lee W, Dai G, Menon L, Carroll RS et al (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2):645–652

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S et al (2012) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng A 18(19–20):2173–2186

    Article  CAS  Google Scholar 

  • Li Y, Meng H, Liu Y, Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. TheScientificWorldJOURNAL 2015(685690):1

    Google Scholar 

  • Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorber B, Hsiao WK, Hutchings IM, Martin KR (2014) Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication 6(1):015001

    Article  PubMed  CAS  Google Scholar 

  • MacNeil S (2008) Biomaterials for tissue engineering of skin. Mater Today 11(5):26–35

    Article  CAS  Google Scholar 

  • Makogonenko E, Tsurupa G, Ingham K, Medved L (2002) Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site. Biochemistry 41:7907–7913

    Article  CAS  PubMed  Google Scholar 

  • Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34

    Article  CAS  PubMed  Google Scholar 

  • Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdizadeh M, Yang J (2013) Design strategies and applications of tissue bioadhesives. Macromol Biosci 13(3):271–288

    Article  CAS  PubMed  Google Scholar 

  • Molly L, Quirynen M, Michiels K, van Steenberghe D (2006) Comparison between jaw bone augmentation by means of a stiff occlusive titanium membrane or an autologous hip graft: a retrospective clinical assessment. Clin Oral Implants Res 17(5):481–487

    Article  PubMed  Google Scholar 

  • Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904

    Article  CAS  PubMed  Google Scholar 

  • Neovius EB, Kratz G (2003) Tissue engineering by cocultivating human elastic chondrocytes and keratinocytes. Tissue Eng 9(2):365–369

    Article  CAS  PubMed  Google Scholar 

  • Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ (2017) A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 12:4937–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh JH, Kim HJ, Kim TI, Baek JH, Ryoo HM, Woo KM (2012) The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation. Biomaterials 33:4089–4099

    Article  CAS  PubMed  Google Scholar 

  • Oh JH, Kim HJ, Kim TI, Woo KM (2014) Comparative evaluation of the biological properties of fibrin for bone regeneration. BMB Rep 47(2):110–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park CH, Oh JH, Jung HM, Choi Y, Rahman SU, Kim S et al (2017) Effects of the incorporation of epsilon-aminocaproic acid/chitosan particles to fibrin on cementoblast differentiation and cementum regeneration. Acta Biomater 61:134–143

    Article  CAS  PubMed  Google Scholar 

  • Passaretti D, Silverman RP, Huang W, Kirchhoff CH, Ashiku S, Randolph MA et al (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7(6):805–815

    Article  CAS  PubMed  Google Scholar 

  • Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW (2015) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62(164–175

    Article  CAS  Google Scholar 

  • Peretti GM, Xu JW, Bonassar LJ, Kirchhoff CH, Yaremchuk MJ, Randolph MA (2006) Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng 12(5):1151–1168

    Article  CAS  PubMed  Google Scholar 

  • Perka C, Schultz O, Spitzer RS, Lindenhayn K, Burmester GR, Sittinger M (2000) Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21(11):1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Pober JS, Tellides G (2012) Participation of blood vessel cells in human adaptive immune responses. Trends Immunol 33(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B Rev 14(1):105–118

    Article  CAS  PubMed  Google Scholar 

  • Rimann M, Laternser S, Keller H, Leupin O, Graf-Hausner U (2015) 3D bioprinted muscle and tendon tissues for drug development. Chimia 69(1–2):65–67

    Article  CAS  PubMed  Google Scholar 

  • Rybarczyk BJ, Lawrence SO, Simpson-Haidaris PJ (2003) Matrix-fibrinogen enhances wound closure by increasing both cell proliferation and migration. Blood 102:4035–4043

    Article  CAS  PubMed  Google Scholar 

  • Sacchi V, Mittermayr R, Hartinger J, Martino MM, Lorentz KM, Wolbank S et al (2014) Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci USA 111(19):6952–6957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakiyama SE, Schense JC, Hubbell JA (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13(15):2214–2224

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65(3):389–402

    Article  CAS  PubMed  Google Scholar 

  • Saltz R, Sierra D, Feldman D, Saltz MB, Dimick A, Vasconez LO (1991) Experimental and clinical applications of fibrin glue. Plast Reconstr Surg 88(6):1005–1015 discussion 1016-1007

    Article  CAS  PubMed  Google Scholar 

  • Santoro E, Agresta F, Buscaglia F, Mulieri G, Mazzarolo G, Bedin N et al (2007) Preliminary experience using fibrin glue for mesh fixation in 250 patients undergoing minilaparoscopic transabdominal preperitoneal hernia repair. J Laparoendosc Adv Surg Tech A 17(1):12–15

    Article  PubMed  Google Scholar 

  • Schek RM, Hollister SJ, Krebsbach PH (2004) Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol Ther 9(1):130–138

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  CAS  PubMed  Google Scholar 

  • Simonpieri A, Del Corso M, Vervelle A, Jimbo R, Inchingolo F, Sammartino G et al (2012) Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol 13(7):1231–1256

    Article  CAS  PubMed  Google Scholar 

  • Spicer PP, Mikos AG (2010) Fibrin glue as a drug delivery system. J Control Release 148(1):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    Article  CAS  Google Scholar 

  • Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tajdaran K, Shoichet MS, Gordon T, Borschel GH (2015) A novel polymeric drug delivery system for localized and sustained release of tacrolimus (FK506). Biotechnol Bioeng 112(9):1948–1953

    Article  CAS  PubMed  Google Scholar 

  • Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G et al (2015) Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 12(108):20150254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai EC, Dalton PD, Shoichet MS, Tator CH (2006) Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27(3):519–533

    Article  CAS  PubMed  Google Scholar 

  • Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C et al (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4(4):318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechselberger G, Russell RC, Neumeister MW, Schoeller T, Piza-Katzer H, Rainer C (2002) Successful transplantation of three tissue-engineered cell types using capsule induction technique and fibrin glue as a delivery vehicle. Plast Reconstr Surg 110(1):123–129

    Article  PubMed  Google Scholar 

  • Westreich R, Kaufman M, Gannon P, Lawson W (2004) Validating the subcutaneous model of injectable autologous cartilage using a fibrin glue scaffold. Laryngoscope 114(12):2154–2160

    Article  CAS  PubMed  Google Scholar 

  • Whelan D, Caplice NM, Clover AJ (2014) Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 196:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wolberg AS (2007) Thrombin generation and fibrin clot structure. Blood Rev 21:131–142

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    CAS  PubMed  Google Scholar 

  • Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S et al (2000) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothoracic Surg 17(5):587–591

    Article  CAS  Google Scholar 

  • Yuan Ye K, Sullivan KE, Black LD (2011) Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp 55

    Google Scholar 

  • Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Mi Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, C.H., Woo, K.M. (2018). Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. In: Noh, I. (eds) Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, vol 1064. Springer, Singapore. https://doi.org/10.1007/978-981-13-0445-3_16

Download citation

Publish with us

Policies and ethics