Skip to main content

A Model Selection Strategy of Gaussian Process Regression for Modeling Inset-Fed Microstrip Patch Antenna

  • Conference paper
  • First Online:
International Telecommunications Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 504))

Abstract

This paper presents a modeling of inset-fed microstrip patch antenna using Gaussian Process Regression (GPR) technique. The vast majority of the studies employ a readily existing model, using a fixed mean and covariance functions without further investigation. In this paper we propose a strategy to choose the most appropriate parameters of Gaussian process regression technique for modeling inset-fed microstrip patch antenna. We evaluate the influence of the choice of mean and covariance functions on the performance of the GPR models. Moreover, the dependency of the antenna resonant frequencies on the physical and geometrical properties of the materials involved, dimensions of the patch, and the feed location is investigated. In order to validate the performance of the proposed GPR model, we evaluate different algorithms with main focus on Radial Basis Function Neural Networks, and Multilayer Perceptron Neural Network. The obtained results show that the proposed method outperforms the neural network models in terms of mean square error and determination coefficient. The results give a good agreement with the results obtained using HFSS software, which ensures the validity of our proposed model in the evaluation of the resonant frequency over a spectrum range of 1–10 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali Z, Singh VK, Singh AK, Ayub S (2013) Wide band inset feed microstrip patch antenna for mobile communication. In: International conference on communication systems and network technologies (CSNT), pp 51–54

    Google Scholar 

  2. Kalyan M, Partha Pratim S (2016) Half hexagonal broadband high gain microstrip patch antenna for mobile and radar applications. Microwave Opt Technol Lett 58(5):1028–1032

    Article  Google Scholar 

  3. Çalışkan R, Gültekin SS, Uzer D, Dündar Ö (2015) A microstrip patch antenna design for breast cancer detection. Proc-Soc Behav Sci 195:2905–2911

    Article  Google Scholar 

  4. Balanis CA (2016) Antenna theory: analysis and design. Wiley, New York

    Google Scholar 

  5. Karaboga D, Guney K, Sagiroglu S, Erler M (1999) Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proce-Microwaves Antennas Propag 146(2):155–159

    Article  Google Scholar 

  6. Gupta VR, Gupta N (2005) An artificial neural network model for feed position of the microstrip antenna. Elektronika Ir Elektrotechnika 60(4):82–89

    Google Scholar 

  7. Sarkar BD, Shankar S, Thakur A, Chaurasiya H (2015) Resonant frequency determination of rectangular patch antenna using neural network. In: 1st International conference on next generation computing technologies (NGCT). IEEE, pp 915–917

    Google Scholar 

  8. Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning, vol 1. MIT Press, Cambridge

    Google Scholar 

  9. Zhang QJ, Gupta KC, Devabhaktuni VK (2003) Artificial neural networks for RF and microwave design-from theory to practice. IEEE Trans Microw Theory Tech 51(4):1339–1350

    Article  Google Scholar 

  10. Angiulli G, Cacciola M, Versaci M (2007) Microwave devices and antennas modelling by support vector regression machines. IEEE Trans Magn 43(4):1589–1592

    Article  Google Scholar 

  11. Hansen RC, Burke M (2000) Antennas with magneto-dielectrics. Microwave Opt Technol Lett 26(2):75–78

    Article  Google Scholar 

  12. Rasmussen CE, Williams CK (2004) Gaussian processes in machine learning. Lect Notes Comput Sci 3176:63–71

    Article  Google Scholar 

  13. Gupta M, Jin L, Homma N (2004) Static and dynamic neural networks: from fundamentals to advanced theory. Wiley, New York

    Google Scholar 

  14. Benoudjit N, Ferroudji K, Bahaz M, Bouakaz A (2011) In vitro microemboli classification using neural network models and RF signals. Ultrasonics 51(3):247–252

    Article  Google Scholar 

  15. He H, Siu WC (2011) Single image super-resolution using Gaussian process regression. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 449–456

    Google Scholar 

  16. Kim K., Lee, D., Essa, I.: Gaussian process regression flow for analysis of motion trajectories. In IEEE international conference on Computer vision (ICCV), pp. 1164–1171. IEEE. (2011)

    Google Scholar 

  17. Zhu F, Carpenter T, Gonzalez DR, Atkinson M, Wardlaw J (2012) Computed tomography perfusion imaging denoising using Gaussian process regression. Phys Med Biol 57(12):N183

    Article  Google Scholar 

  18. Chan LLT, Liu Y, Chen J (2013) Nonlinear system identification with selective recursive Gaussian process models. Ind Eng Chem Res 52(51):18276–18286

    Article  Google Scholar 

  19. Jacobs JP, De Villiers JP (2010) Gaussian-process-regression-based design of ultrawideband and dual-band CPW-fed slot antennas. J Electromagn Waves Appl 24(13):1763–1772

    Google Scholar 

  20. Duvenaud DK, Nickisch H, Rasmussen CE (2011) Additive gaussian processes. In Advances in neural information processing systems, pp 226–234

    Google Scholar 

  21. Arlot S, Lerasle M (2016) Choice of V for V-fold cross-validation in least-squares density estimation. J Mach Learn Res 17(208):1–50

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Ferroudji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferroudji, K., Reddaf, A., Bouchachi, I., Mounir, B. (2019). A Model Selection Strategy of Gaussian Process Regression for Modeling Inset-Fed Microstrip Patch Antenna. In: Boyaci, A., Ekti, A., Aydin, M., Yarkan, S. (eds) International Telecommunications Conference. Lecture Notes in Electrical Engineering, vol 504. Springer, Singapore. https://doi.org/10.1007/978-981-13-0408-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0408-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0407-1

  • Online ISBN: 978-981-13-0408-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics