Skip to main content

Thermophilic Chemolithotrophic Bacteria in Mining Sites

  • Chapter
  • First Online:
Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 8))

  • 857 Accesses

Abstract

Microorganisms which inhabit extremely acidic environments are increasingly attracting the attention of researchers because of their peculiar physiology. These extremophiles play a huge role in geochemical processes in mining sites and environmental pollution by heavy metals. They also have important applications in biotechnology of metals. The study of biodiversity and relevant biogeochemical processes is of great interest for improving metal leaching technologies and developing countermeasures for the formation of acid mine drainage (AMD). Due to the insufficient data of ecology of chemolithotrophic bacteria inhabit natural and technogenic biotopes of sulfide ores in Armenia, studies of biodiversity and dissemination of these bacteria in the copper, copper-molybdenum, gold-bearing, and polymetallic ore deposits of Armenia were performed. Using enrichment media and isolation techniques, new and original strains of sulfur- and/or iron-oxidizing bacteria (SIOB) were isolated and studied. Based on physiological and biochemical peculiarities as well as molecular biological studies, the isolated strains were identify as Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, L. ferriphilum, and Sulfobacillus thermosulfidooxidans subsp. asporogenes. In this paper we have made an attempt to summarize the data obtained concerning dissemination of moderate thermophilic and thermotolerant SIOB and their biological properties as well as abilities to oxidize the most abundant minerals, pyrite and chalcopyrite. Their role in geochemical processes occurring in mining sites as well as bioleaching of the most abundant minerals pyrite, chalcopyrite, and refractory gold-bearing ores were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander B, Leach S, Ingledev WJ (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J Gen Microbiol 133:1171–1179

    CAS  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  CAS  Google Scholar 

  • Battaglia F, Morin D, Garcia JL, Oliver P (1994) Isolation and study of two strains of Leptospirillum – like bacteria from a natural mixed population cultured on a cobaltiferrous pyrite substrate. Antonie van Leeawenhook 66:295–302

    Article  CAS  Google Scholar 

  • Bogdanova TI, Tsaplina IA, Kondrat'eva TF, Duda VI, Suzina NE, Melamud VS, Tourova TP, Karavaiko GI (2006) Sulfobacillus thermotolerans sp. Nov., a new thermotolerant, chemolithotrophic bacterium. Int J Sys Evol Microbiology 56:1039–1042

    Article  CAS  Google Scholar 

  • Bond PL, Druscel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borchewski KM (1967) Keto acids as growth-limiting factors in autotrophic growth of Thiobacillus thiooxidans. J Bacteriol 93:597–599

    Google Scholar 

  • Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2218

    PubMed  PubMed Central  CAS  Google Scholar 

  • Clark DA, Norris P (1996) Acidimicrobium ferrooxidans gen. nov., mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790

    Article  CAS  Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dew DW, Lawson EM, Broadhurst JL (1997) The BIOX process for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE (ed) Biomining. Theory, microbes and industrial processes. Springer/Berlin Heilderberg, New York/Londes/Berlin, pp 45–80

    Google Scholar 

  • Dopson M, Lindstrom EB (1999) Potential role of Thiobacillus caldus in Arsenopyrite Leaching. Appl Environ Microbiol 65:36–40

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dopson M, Lindstrom EB (2004) Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite and chalcopyrite. Microb Ecol 48:19–28

    Article  CAS  PubMed  Google Scholar 

  • Dufresne S, Bousquet J, Boissenot M, Guay R (1996) Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46:1056–1064

    Article  CAS  PubMed  Google Scholar 

  • Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, Mcguire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179

    Article  CAS  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfild J (2000) An Archaea iron-oxidizing extreme acidophilic important in acid mine drainage. Science 287:1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Fu B, Zhou H, Zhang R, Qiu G (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int Biodeterior Biodegrad 62:109–115

    Article  CAS  Google Scholar 

  • Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621

    PubMed  PubMed Central  CAS  Google Scholar 

  • Golovacheva RS (1976) Ultrastructural organization of Sulfobacillus thermosulfidooxidans cells and spores. Microbiologiya 48:681–689

    Google Scholar 

  • Golovacheva RS (1979) Peculiarities of morphogenesis of Sulfobacillus thermosulfidooxidans. Microbiologiya 48:863–867

    CAS  Google Scholar 

  • Golovacheva RS, Karavayko GI (1978) Sulfobacillus a new genera of thermophilic spore forming bacteria. Mikrobiologiya 47:815–822

    CAS  Google Scholar 

  • Golovacheva RS, Golyshina OW, Karavaiko GI, Dorofeev AG, Pivovarova TA, Chernikh NA (1992) New Iron-oxidizing Bacteria Leptospirillum thermoferrooxidans sp. nov. Mikrobiologiya 61:1056–1064

    CAS  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat'eva TF, Moore ER, Abraham WR, Lansdorf H, Timmis K, Yakimov MN, Golyshin PN (2000) Ferroplasma acidophilum gen. nov., sp. nov., an acidophilic autotrophic, ferrous-iron-oxidizing cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct linage of the Archaea. Int J Syst Bacteriol 50:997–1006

    Article  CAS  Google Scholar 

  • Hallmann R, Friedrich A, Koops HP, Pommerening -Roser A, Rohde K, Zenneck C, Sand W (1993) Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physiochemical factors influence in microbial metal leaching. Geomicrobiology 10:193–206

    Article  Google Scholar 

  • Harrison AP Jr (1986) Characteristics of Thiobacillus ferrooxidans and other iron-oxidizing bacteria, with emphasis on nucleic acid analyses. Biotechnol Appl Biochem 8:249–257

    CAS  Google Scholar 

  • Harrison AP, Norris PR (1985) Leptospirillum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol Lett 33:99–102

    Article  Google Scholar 

  • Hedrich S, Johnson DB (2013) Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. Int J Syst Evol Microbiol 63:4018–4025

    Article  CAS  PubMed  Google Scholar 

  • Helle U, Onken U (1988) Continuous microbial leaching of a pyritic concentrate by Leptospirillum-like bacteria. Appl Microbiol Biotechnol 28:553–558

    Article  CAS  Google Scholar 

  • Hippe H (2000) Leptospirillum gen. nov. (ex Markosyan 1972) nom. rev. Including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. System Evol Microbiol 50:501–503

    Article  Google Scholar 

  • Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods 25:205–218

    Article  Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Joulian C, d’Hugues P, Hallberg KB (2008) Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extremophiles 12:789–798

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Karavaiko GI, Golovacheva RS (1986) Aerobic thermophilic bacteria, oxidizing sulfur compounds and iron. Biology of thermophilic microorganisms. Nayka, Moscow, pp 35–47

    Google Scholar 

  • Karavaiko GI, Kovalenko TV, Golovacheva RS (1980) Microbiological aspects of leaching copper from ores. In: Czegledi et al. (eds) Proceedings of the international conference on use of microorganisms in hydrometallurgy, B, Pecs. Hungary, December 4–6, pp 95–107

    Google Scholar 

  • Karavaiko GI, Golovacheva RS, Pivovarova TA, Tzaplina IA, Vartanyan NS (1988) Thermophilic bacteria of the genus Sulfobacillus. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Proceedings of the International Symposium on biohydrometallurgy, Warwick, July 12–16. Kew: Science and Technology Letters, pp 29–41

    Google Scholar 

  • Karavaiko GI, Bulygina ES, Tsaplina IA, Bogdanova TI, Chumakov KM (1990) Sulfobacillus thermosulfidooxidans: a new lineage of bacterial evolution. FEBS 261:8–10

    Article  Google Scholar 

  • Karavaiko GI, Tourova TP, Tsaplina IA, Bogdanova TI (2000) Investigation of the phylogenetic position of aerobic, moderately thermophilic Bacteria oxidizing Fe2+, S0, and sulfide minerals and affiliated to the Genus Sulfobacillus. Mikrobiologiya 69(6):732–735

    CAS  Google Scholar 

  • Karavaiko GI, Krasil’nikova EN, Tsaplina IA, Bogdanova TI, Zakharchuk LM (2001) Growth and carbohydrate metabolism of Sulfobacilli. Mikrobiologiya 70:293–299

    CAS  Google Scholar 

  • Karavaiko GI, Zakharchuk LM, Bogdanova TI, Egorova MA, Tsaplina IA, Krasil’nikova EN (2002) The enzymes of carbon metabolism in Thermotolerant Bacillar strain K1. Mikrobiologiya 71(6):755–761

    CAS  Google Scholar 

  • Karavaiko GI, Dubinina GA, Kondrat'eva TF (2006) Lithotrophic microorganisms of the oxidative cycles of sulfur and iron. Microbiology 75:512–545

    Article  CAS  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  • Kovalenko EV, Malakhova PT (1983) Spore forming iron oxidizing bacteria Sulfobacillus thermosulfidooxidans. Mikrobiologiya 52:962–966

    CAS  Google Scholar 

  • Krasil’nikova E, Bogdanova T, Zakharchuk L, Tsaplina I, Karavaiko G (1998) Metabolism of reduced sulfur compounds in Sulfobacillus thermosulfidooxidans, strain 1269. Mikrobiologiya 67:156–164

    Google Scholar 

  • Krasil’nikova EN, Tsaplina IA, Zakharchuk LM, Bogdanova TI (2001) Effects of exogenous factors on the activity of enzymes involved in carbon metabolism in thermoacidophilic bacteria of the genus Sulfobacillus. Prikl Biokhim Mikrobiol 37:418–423

    PubMed  Google Scholar 

  • Krasil’nikova E, Bogdanova T, Zakharchuk L, Tsaplina I (2004) Sulfur-metabolizing enzymes in thermoacidophilic bacteria Sulfobacillus sibiricus. Appl Biochem Microbiol 40:53–56

    Article  Google Scholar 

  • Markosyan GE (1972) A new Iron-oxidizing bacterium Leptospirillum ferrooxidans gen. nov. sp. nov. Biol Zh Armenii 25(2):26–29

    Google Scholar 

  • Melamud VS, Pivovarova TA, Kondrat'eva TF, Karavaiko GI (1999) Study of oxidation by bacteria of a difficult-to-dress gold-containing pyrite-arsenopyrite concentrate under moderately thermophilic conditions. Prikl Biokhim Mikrobiol 35:182–189

    CAS  Google Scholar 

  • Melamud VS, Pivovarova TA, Tourova TP, Kolganova TV, Osipov GA, Lysenko AM, Kondrat’eva TF, Karavaiko GI (2003) Sulfobacillus sibiricus sp. nov., a new moderately thermophilic bacterium. Miкrobiologiya 72:681–688

    CAS  Google Scholar 

  • Merrettig U, Wlotzka P, Onken U (1989) The removal of pyritic sulphur from coal by Leptospirillum – like bacteria. Appl Microbiol Biotechnol 31:626–628

    Article  CAS  Google Scholar 

  • Norris PR (1983) Iron and mineral oxidation with Leptospirillum – like bacteria. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, pp 43–59

    Google Scholar 

  • Norris PS, Kelly DP (1978) In: Murr LF, Torma AE, Brierley JA (eds) Metallurgical application of bacterial leaching and related microbiological phenomena. Academic Press, New York, p 83

    Chapter  Google Scholar 

  • Norris PR, Brierley JA, Kelly DP (1980) Physiological characteristics of two facultatively-thermophilic mineral oxidizing bacteria. FEMS Microbiol Lett 7:119–122

    Article  CAS  Google Scholar 

  • Norris PR, Barr DW, Hinson D (1988) Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP (eds) Biohydrometallurgy: proceedings of international symposium. Science and Technology Letters, Kew/Surrey, pp 43–59

    Google Scholar 

  • Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulfide-oxidizing bacteria. Microbiology 142:775–783

    Article  CAS  PubMed  Google Scholar 

  • Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  PubMed  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257

    Article  CAS  PubMed  Google Scholar 

  • Pivovaarova TA, Markosyan GE, Karavaiko GI (1981) Morphogenesis and thin structure of Leptospirillum ferrooxidans. Mikrobiologiya 50:482–486

    Google Scholar 

  • Pivovarova TA, Golovacheva RS (1985) Cytology, physiology and biochemistry of microorganisms important for hydrometallurgy. In: Karavaiko GI, Groudev SNМ (eds) Biogeotechnology of metals. UNEP, Moscow, pp 27–55

    Google Scholar 

  • Pizarro J, Jedlicki E, Orlellana O, Romero J, Espejo RT (1996) Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl Environ Microbiol 62:1323–1328

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rawlings DE (1995) In: Jerez CA, Vargas T, Toledo H, Wiertz JV (eds) Biohydrometallurgical processing. University of Chile, Santiago, pp 9–17

    Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Microbiol 56:65–91

    Article  CAS  Google Scholar 

  • Rawlings DE, Johnson DB (2007) Biomining. Springer, Berlin-Heidelberg

    Book  Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evolution of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sand W, Gehrke T, Hallmann R, Schippers A (1995) Sulfur chemistry, bio¢lm, and the (in)direct attack mechanism – a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966

    Article  CAS  Google Scholar 

  • Sand W, Jozsa P-G, Kovacs Z-M, Săsăran N, Schippers A (2007) Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. J Geochem Explor 92:205–211

    Article  CAS  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 3–33

    Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms with thiosulfate or via Polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schippers A, Jozsa PG, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schippers A, Rohwerder T, Sand W (1999) Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52:104–110

    Article  CAS  Google Scholar 

  • Senyushkin AA, Severina LO, Mityushina LL (1997) Capsule formation by Sulfobacillus thermosulfidooxidans cells growing under oligotrophic and mixotrophic conditions. Mikrobiologiya 66:455–461

    Google Scholar 

  • Severina LO, Senyushkin AA, Karavaiko GI (1995) The structure and chemical composition of the S-layer in representatives of the genus Sulfobacillus. Mikrobiologiya 64:336–340

    CAS  Google Scholar 

  • Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35:1417–1423

    Article  CAS  Google Scholar 

  • Sugio T, Mizunashi W, Inagaki K, Tano T (1987) Purification and some properties of sulfur: ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 169:4916–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzina NF, Severina LO, Senyushkin AA, Karavaiko GI, Duda VI (1999) Ultrastructural Organization of Membrane System in Sulfobacillus thermosulfidooxidans. Mikrobiologiya 68:491–500

    Google Scholar 

  • Tsaplina IA, Osipov GA, Bogdanova TI, Nedorezova TP, Karavaiko GI (1994) Fatty acid composition of lipids of thermoacidophilic bacteria from the genus Sulfobacillus. Mikrobiologiya 63:821–830

    CAS  Google Scholar 

  • Tsaplina IA, Krasil’nikova EN, Zakharchuk LM, Egorova MA, Bogdanova TI, Karavaiko GI (2000) Carbon metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, strain 41. Mikrobiologiya 69:334–340

    CAS  Google Scholar 

  • Turova TP, Poltoraus AB, Lebedeva IA, Bulygina ES, Tsaplina IA, Bogdanova TI, Karavaiko GI (1995) Phylogenetic position of Sulfobacillus thermosulfidooxidans: determination based on the 5S and 16SrRNA sequence analysis. Mikrobiologiya 64:366–374

    CAS  Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardanyan NS (1998) The effect of environmental factors on pyrite oxidation by Sulfobacillus thermosulfidooxidans. Biotekhnologiya 6:48–55

    Google Scholar 

  • Vardanyan NS (2003) Oxidation of pyrite and chalcopyrite by mixed cultures of Sulfobacilli and other sulphur and iron oxidizing bacteria. Biotechnology 6:79–83

    Google Scholar 

  • Vardanyan NS, Akopyan VP (2003) Leptospirillum-like bacteria and evaluation of their role in pyrite oxidation. Mikrobiologya 72:493–497

    Google Scholar 

  • Vardanyan NS, Naghdalyan SZ (2009) Periodic bioleaching of refractory gold-bearing pyrite ore. Appl Biochem Mikrobiol 45(4):401–405

    Article  CAS  Google Scholar 

  • Vardanyan AK, Vardanyan NS (2016) Bioleaching of pyrite and chalcopyrite by new isolated thermotolerate sulfur-oxidizing bacteria Acidithiobacillus tandzuti sp.nov. Int J Sci Eng Res 7:203–207

    Google Scholar 

  • Vardanyan AK, Vardanyan NS, Markosyan LM (2013) Peculiarities of adhesion and bioleaching of pyrite by new isolated Leptospirillum spp. Bacteria. Univ J Microbiol Res 1(2):22–25

    CAS  Google Scholar 

  • Vardanyan A, Stepanyan S, Vardanyan N, Markosyan L, Sand W, Vera V, Zhang R (2015a) Study and assessment of microbial communities in natural and commercial bioleaching systems. Miner Eng 81:167–172

    Article  CAS  Google Scholar 

  • Vardanyan A, Vardanyan N, Markosyan L, Sand W, Vera M, Zhang R (2015b) Biofilm formation and extracellular polymeric substances (eps) analysis by new isolates of Leptospirillum, Acidithiobacillus and Sulfobacillus from Armenia. Adv Mater Res 1130:153–156

    Article  Google Scholar 

  • Vartanyan NS, Pivovarova TA, Tsaplina IA, Lysenko AM, Karavaiko GI (1988) A new thermoacidophilic bacterium belonging to the Sulfobacillus genus. Mikrobiologiya 57:268–274

    CAS  Google Scholar 

  • Wisotzkey JD, Jurtsbuk P Jr, Fox GE et al (1992) Comparative sequence analysis on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris and Bacillus cycloheptanicus and proposal for creation of new genus, Alicyclobacillus gen. nov. Syst Bacteriol 42:263–269

    Article  CAS  Google Scholar 

  • Wood AP, Kelly DP (1984) Growth and sugar metabolism of a thermoacidophilic iron-oxidizing mixotrophic bacterium. J Gen Microbiol 130:1337–1348

    CAS  Google Scholar 

  • Zakharchuk LM, Tsaplina IA, Krasil’nikova EN, Bogdanova TI, Karavaiko GI (1994) Carbon metabolism in Sulfobacillus thermosulfidooxidans strain 1269. Mikrobiologiya 63:573–580

    CAS  Google Scholar 

  • Zakharchuk LM, Egorova M, Tsaplina IA, Bogdanova TI, Krasil’nikova EN, Melamud VS, Karavaiko GI (2003) Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation. Mikrobiologiya 72:62–626

    Google Scholar 

  • Zhang R, Xia J, Peng J, Zhang Q, Zhang C, Nie Z, Qiu G (2010) A new strain Leptospirillum ferriphilum YTW315 for bioleaching of metal sulfides ores. Trans Nonferrous Met Soc China 20:135–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narine S. Vardanyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vardanyan, N.S., Vardanyan, A.K. (2018). Thermophilic Chemolithotrophic Bacteria in Mining Sites. In: Egamberdieva, D., Birkeland, NK., Panosyan, H., Li, WJ. (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-13-0329-6_7

Download citation

Publish with us

Policies and ethics