Skip to main content

Sheet Thinning Prediction and Calculation in Incremental Sheet Forming

  • Conference paper
  • First Online:
Precision Product-Process Design and Optimization

Abstract

Incremental Sheet Forming (ISF) technique is an emerging process for die less forming. It has wide applications in many industries e.g., automobile and medical bone transplants. In ISF, forming of the sheet is done using Numerical Control (NC) single point forming tool, which incrementally deforms the sheet by highly localized plastic deformation. It gives better formability when compared with traditional forming processes, like deep drawing and spinning. ISF has few limitations out of which sheet thinning is one of the most critical limitations. In ISF, formability is generally measured by the limit of maximum formable wall angle and maximum permissible sheet thinning. Formability of the sheet during ISF or traditional forming processes can be presented by a Forming Limit Curve (FLC). The sheet thinning in ISF can be predicted through sine law. By assuming plastic incompressibility, sheet thinning can also be predicted by considering volume constancy concept. In this study, forming limit has been predicted for two wall profiles, viz., circular and elliptical wall. Further, a methodology has been presented as a way to predict and calculate sheet thinning during ISF. The developed methodology has been validated through numerical simulations followed by experimental investigations. An in-house Computer-Aided Manufacturing (CAM) module for incremental toolpath is developed for both simulations and experiments. The results are in correlation with considerable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://corporate.ford.com/news-center/press-releases-detail/pr-ford-develops-advanced-technology-38244, 10 August, 2014, 8:30 pm IST.

  2. 2.

    http://lectroetch.com/product-category/grid-marking-equipment/, 31st July, 2017, 1:45 am. IST.

  3. 3.

    ABAQUS/Explicit Theory Manual Version 6.3, vol. 1–2, 2002.

Abbreviations

∝, \( \oslash \):

Wall angle

x, y, and z:

Coordinates

t f :

Final thickness

t o :

Initial thickness

f t :

Forming limit

v :

Poisson’s ratio

References

  • Ambrogio, G., L. De Napoli, L. Filice, F. Gagliardi, and M. Muzzupappa. 2005. Application of incremental forming process for high customised medical product manufacturing. Journal of Materials Processing Technology 162: 156–162.

    Article  Google Scholar 

  • Ambrogio, G., C. Ciancio, L. Filice, and F. Gagliardi. 2017. Innovative metamodelling-based process design for manufacturing: an application to Incremental Sheet Forming. International Journal of Material Forming 10 (3): 279–286.

    Article  Google Scholar 

  • Araújo, R., P. Teixeira, M.B. Silva, A. Reis, and P. Martins. 2013. Single point incremental forming of a medical implant. Key Engineering Materials 554: 1388–1393. Trans Tech Publications.

    Article  Google Scholar 

  • Bagudanch, I., L.M. Lozano-Sánchez, L. Puigpinós, M. Sabater, L.E. Elizalde, A. Elías-Zúñiga, and M.L. Garcia-Romeu. 2015. Manufacturing of polymeric biocompatible cranial geometry by single point incremental forming. Procedia Engineering 132: 267–273.

    Article  Google Scholar 

  • Bambach, M. 2010. A geometrical model of the kinematics of incremental sheet forming for the prediction of membrane strains and sheet thickness. Journal of Materials Processing Technology 210 (12): 1562–1573.

    Article  Google Scholar 

  • Bhoyar, P.K., and A.B. Borade. 2015. The use of single point incremental forming for customized implants of unicondylar knee arthroplasty: a review. Research on Biomedical Engineering 31 (4): 352–357.

    Article  Google Scholar 

  • Cao, T., B. Lu, D. Xu, H. Zhang, J. Chen, H. Long, and J. Cao. 2015. An efficient method for thickness prediction in multi-pass incremental sheet forming. The International Journal of Advanced Manufacturing Technology 77 (1–4): 469–483.

    Article  Google Scholar 

  • Chu, T.C., W.F. Ranson, and M.A. Sutton. 1985. Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics 25 (3): 232–244.

    Article  Google Scholar 

  • Dejardin, S., Gelin, J.-C., Thibaud, S: On-line thickness measurement in incremental sheet forming process. In Proceedings of the 13th International Conference on Metal Forming, Toyohashi, 19–22 Sept 2010, 938–941.

    Google Scholar 

  • Duflou, J.R., J. Verbert, B. Belkassem, J. Gu, H. Sol, C. Henrard, and A.M. Habraken. 2008. Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Annals-Manufacturing Technology 57 (1): 253–256.

    Article  Google Scholar 

  • Eksteen, P. D. W. 2013. Development of incrementally formed patient-specific titanium knee prosthesis. Doctoral dissertation, Stellenbosch: Stellenbosch University).

    Google Scholar 

  • Eksteen, P.D.W., and A. Van der Merwe. 2012. Incremental sheet forming (ISF) in the manufacturing of titanium based plate implants in the bio-medical sector. Computers and Industrial Engineering 42: 15–18.

    Google Scholar 

  • Filice, L. 2006. A phenomenology-based approach for modelling material thinning and formability in incremental forming of cylindrical parts. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (9): 1449–1455.

    Article  Google Scholar 

  • Gatea, S., H. Ou, and G. McCartney. 2016. Review on the influence of process parameters in incremental sheet forming. International Journal of Advanced Manufacturing Technology 87 (1): 479–499.

    Article  Google Scholar 

  • Hadoush, A., and A.H. Van den Boogaard. 2008. Time reduction in implicit single point incremental sheet forming simulation by refinement-derefinement. International Journal of Material Forming 1: 1167–1170.

    Article  Google Scholar 

  • Han, F., and J.H. Mo. 2008. Numerical simulation and experimental investigation of incremental sheet forming process. Journal of Central South University of Technology 15 (5): 581–587.

    Article  Google Scholar 

  • Hariharan, K., and C. Balaji. 2009. Material optimization: A case study using sheet metal-forming analysis. Journal of Materials Processing Technology 209 (1): 324–331.

    Article  Google Scholar 

  • Hild, F., and S. Roux. 2006. Digital image correlation: from displacement measurement to identification of elastic properties—A review. Strain 42 (2): 69–80.

    Article  Google Scholar 

  • Hirt, G., J. Ames, and M. Bambach. 2005. A new forming strategy to realize parts designed for deep-drawing by incremental CNC sheet forming. Steel Research International 76 (2–3): 160–166.

    Article  Google Scholar 

  • Hussain, G., and L. Gao. 2007. A novel method to test the thinning limits of sheet metals in negative incremental forming. International Journal of Machine Tools and Manufacture 47 (3): 419–435.

    Article  Google Scholar 

  • Jackson, K., and J. Allwood. 2009. The mechanics of incremental sheet forming. Journal of Materials Processing Technology 209 (3): 1158–1174.

    Article  Google Scholar 

  • Jeswiet, J., F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood. 2005. Asymmetric single point incremental forming of sheet metal. CIRP Annals-Manufacturing Technology 54 (2): 88–114.

    Article  Google Scholar 

  • Kim H. J., and Lee D. 1996. Further development of experimental methods to verify computer simulations. In Proceedings of NUMISHEET, Dearbom, Michigan, USA, 316–323.

    Google Scholar 

  • Kim, Y.H., and J.J. Park. 2002. Effect of process parameters on formability in incremental forming of sheet metal. Journal of Materials Processing Technology 130: 42–46.

    Article  Google Scholar 

  • Leszak, E. 1967. U.S. Patent No. 3,342,051. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Li, J.C., L.I. Chong, and T.G. Zhou. 2012. Thickness distribution and mechanical property of sheet metal incremental forming based on numerical simulation. Transactions of Nonferrous Metals Society of China 22: s54–s60.

    Article  Google Scholar 

  • Liu, Z., Y. Li, and P.A. Meehan. 2013. Vertical wall formation and material flow control for incremental sheet forming by revisiting multi-stage deformation path strategies. Materials and Manufacturing Processes 28 (5): 562–571.

    Article  Google Scholar 

  • Liu, Z., W.J. Daniel, Y. Li, S. Liu, and P.A. Meehan. 2014. Multi-pass deformation design for incremental sheet forming: Analytical modeling, finite element analysis and experimental validation. Journal of Materials Processing Technology 214 (3): 620–634.

    Article  Google Scholar 

  • Lu, B., Y. Fang, D.K. Xu, J. Chen, S. Ai, H. Long, and J. Cao. 2015. Investigation of material deformation mechanism in double side incremental sheet forming. International Journal of Machine Tools and Manufacture 93: 37–48.

    Article  Google Scholar 

  • Mason, B. 1978. Sheet metal forming small batches. Bachelor’s thesis, University of Nottingham.

    Google Scholar 

  • Matsubara, S. 2001. A computer numerically controlled dieless incremental forming of a sheet metal. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 215 (7): 959–966.

    Article  Google Scholar 

  • Milutinovića, M., R.L.M. Potranb, D. Vilotića, P. Skakuna, and M. Plančaka. 2014. Application of single point incremental forming for manufacturing of denture base. Journal for Technology of Plasticity 39 (2): 15–23.

    Google Scholar 

  • Mirnia, M.J., B.M. Dariani, H. Vanhove, and J.R. Duflou. 2014. Thickness improvement in single point incremental forming deduced by sequential limit analysis. The International Journal of Advanced Manufacturing Technology 70 (9–12): 2029–2041.

    Article  Google Scholar 

  • Nguyen-Tran, H.D., H.S. Oh, S.T. Hong, H.N. Han, J. Cao, S.H. Ahn, and D.M. Chun. 2015. A review of electrically-assisted manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology 2 (4): 365–376.

    Article  Google Scholar 

  • Nirala, H. K, Paul, A., Singh, A., Agrawal, A. 2015. Adaptive step depth for uniform stretching in single point incremental forming. In International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 2015), December 10–12, IIT Bombay, India.

    Google Scholar 

  • Nirala, Harish Kumar, and Anupam Agrawal. 2016. Approach for prediction and calculation of sheet thinning in incremental sheet forming (AIMTDR-2016), December 16–18, 2016 at College of Engineering, Pune, Maharashtra, INDIA.

    Google Scholar 

  • Nirala, H.K., P.K. Jain, J.J. Roy, M.K. Samal, and P. Tandon. 2017. An approach to eliminate stepped features in multi-stage incremental sheet forming process: Experimental and FEA analysis. Journal of Mechanical Science and Technology 31 (2): 599–604.

    Article  Google Scholar 

  • Paniti, I., & Paroczi, A. 2011. Design and modeling of integrated hall-effect sensor based on-line thickness measurement device for incremental sheet forming processes. In 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 297–302. IEEE.

    Google Scholar 

  • Piegl, L., and W. Tiller. 1997. The NURBS book (Monographs in visual communication), 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Silva, M.B., M. Skjodt, A.G. Atkins, N. Bay, and P.A.F. Martins. 2008a. Single-point incremental forming and formability—Failure diagrams. The Journal of Strain Analysis for Engineering Design 43 (1): 15–35.

    Article  Google Scholar 

  • Silva, M.B., M. Skjodt, P.A. Martins, and N. Bay. 2008b. Revisiting the fundamentals of single point incremental forming by means of membrane analysis. International Journal of Machine Tools and Manufacture 48 (1): 73–83.

    Article  Google Scholar 

  • Silva, M.B., P.S. Nielsen, N. Bay, and P.A. Martins. 2011. Failure mechanisms in single-point incremental forming of metals. The International Journal of Advanced Manufacturing Technology 56 (9–12): 893–903.

    Article  Google Scholar 

  • Skjodt, M., M.B. Silva, P.A.F. Martins, and N. Bay. 2010. Strategies and limits in multi-stage single-point incremental forming. The Journal of Strain Analysis for Engineering Design 45 (1): 33–44.

    Article  Google Scholar 

  • Xu, D., R. Malhotra, N.V. Reddy, J. Chen, and J. Cao. 2012. Analytical prediction of stepped feature generation in multi-pass single point incremental forming. Journal of Manufacturing Processes 14 (4): 487–494.

    Article  Google Scholar 

  • Young, D., and J. Jeswiet. 2004. Wall thickness variations in single-point incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 218 (11): 1453–1459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Agrawal .

Editor information

Editors and Affiliations

Appendix

Appendix

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nirala, H.K., Agrawal, A. (2018). Sheet Thinning Prediction and Calculation in Incremental Sheet Forming. In: Pande, S., Dixit, U. (eds) Precision Product-Process Design and Optimization. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8767-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8767-7_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8766-0

  • Online ISBN: 978-981-10-8767-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics