Skip to main content
Log in

Thickness improvement in single point incremental forming deduced by sequential limit analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Multistage forming is one of the most practical solutions to avoid severe thinning in single point incremental forming (SPIF). A successful implementation of multistage SPIF is strongly dependent on an appropriate deformation path. In this paper, firstly, a simplified modeling technique is proposed using sequential limit analysis. It is shown that sequential limit analysis can predict the thickness distribution faster than an equivalent model in a commercial finite element modeling code like Abaqus can. The reliability of the model is assessed by comparing experimental and simulated results for single-stage and multistage SPIF cones. This model is utilized to study the effect of various deformation paths on the thickness distribution. As a result, a new multistage strategy is designed and implemented to form a 70° wall angle cone in three stages. The thickness distribution of the cone is improved significantly compared to cones formed by a single-stage and a conventional three-stage strategy. Besides this improvement, the new multistage SPIF can be carried out in much less time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53:203–206

    Article  Google Scholar 

  2. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54:88–114

    Article  Google Scholar 

  3. Kim TJ, Yang DY (2000) Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci 42:1271–1286

    Article  MATH  Google Scholar 

  4. Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc IMechE B J Eng Manuf 218:1453–1459

    Article  Google Scholar 

  5. Cerro I, Maidagan E, Arana J, Rivero A, Rodriguez PP (2006) Theoretical and experimental analysis of the dieless incremental sheet forming process. J Mater Process Technol 177:404–408

    Article  Google Scholar 

  6. Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann Manuf Technol 57:253–256

    Article  Google Scholar 

  7. Skjoedt M, Silva MB, Martins PAF, Bay N (2010) Strategies and limits in multi-stage single-point incremental forming. J Strain Anal 45:33–44

    Article  Google Scholar 

  8. Manco L, Filice L, Ambrogio G (2011) Analysis of the thickness distribution varying tool trajectory in single-point incremental forming. Proc IMechE B J Eng Manuf 225:348–356

    Google Scholar 

  9. Malhotra R, Bhattacharya A, Kumar A, Reddy NV, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann Manuf Technol 60:323–326

    Article  Google Scholar 

  10. Chakrabarty J (2006) Theory of plasticity, 3rd edn. Elsevier, Oxford

    Google Scholar 

  11. Mirnia MJ, Mollaei Dariani B (2012) Analysis of incremental sheet metal forming using the upper-bound approach. Proc IMechE B J Eng Manuf 226:1309–1320

    Article  Google Scholar 

  12. Altan BS, Purcek G, Miskioglu I (2005) An upper-bound analysis for equal-channel angular extrusion. J Mater Process Technol 168:137–146

    Article  Google Scholar 

  13. Hwan CL (1997) An upper bound finite element procedure for solving large plane strain deformation. Int J Numer Methods Eng 40:1909–1922

    Article  Google Scholar 

  14. Hwan CL (1997) Plane strain extrusion by sequential limit analysis. Int J Mech Sci 39:807–817

    Article  MATH  Google Scholar 

  15. Andersen KD, Christiansen E, Overton ML (1998) Computing limit loads by minimizing a sum of norms. SIAM J Sci Comput 19:1046–1062

    Article  MATH  MathSciNet  Google Scholar 

  16. Huh H, Lee CH, Yang WH (1999) A general algorithm for plastic flow simulation by finite element limit analysis. Int J Solids Struct 36:1193–1207

    Article  MATH  Google Scholar 

  17. Huh H, Kim K-P, Kim HS (2001) Collapse simulation of tubular structures using a finite element limit analysis approach and shell elements. Int J Mech Sci 43:2171–2187

    Article  MATH  Google Scholar 

  18. Corradi L, Panzeri N (2004) A triangular finite element for sequential limit analysis of shells. Adv Eng Softw 35:633–643

    Article  MATH  Google Scholar 

  19. Leu SY (2007) Analytical and numerical investigation of strain-hardening viscoplastic thick-walled cylinders under internal pressure by using sequential limit analysis. Comput Methods Appl Mech Eng 196:2713–2722

    Article  MATH  Google Scholar 

  20. Makrodimopoulos A, Martin CM (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal Methods Geomech 31:835–865

    Article  MATH  Google Scholar 

  21. Raithatha A, Duncan SR (2009) Rigid plastic model of incremental sheet deformation using second-order cone programming. Int J Numer Methods Eng 78:955–979

    Article  MATH  MathSciNet  Google Scholar 

  22. Le CV, Nguyen-Xuan H, Nguyen-Dang H (2010) Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput Struct 88:65–73

    Article  Google Scholar 

  23. MOSEK ApS (2012) The MOSEK optimization toolbox for MATLAB manual, version 6.0 (revision 135). Denmark

  24. Long YQ, Cen S, Long ZF (2009) Advanced finite element method in structural engineering. Springer, Berlin

    Book  MATH  Google Scholar 

  25. Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-element method. Oxford University Press, Oxford

    Google Scholar 

  26. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  27. Ma LW, Mo JH (2008) Three-dimensional finite element method simulation of sheet metal single-point incremental forming and the deformation pattern analysis. Proc IMechE B J Eng Manuf 222:373–380

    Article  Google Scholar 

  28. Eyckens P, Belkassem B, Henrard C, Gu J, Sol H, Habraken AM, Duflou JR, Van Bael A, Van Houtte P (2011) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mate Form 4:55–71

    Article  Google Scholar 

  29. Bambach M (2008) Process strategies and modeling approaches for asymmetric incremental sheet forming. Umformtechnische Schriften Band 139. Shaker Verlag, Aachen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mollaei Dariani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirnia, M.J., Mollaei Dariani, B., Vanhove, H. et al. Thickness improvement in single point incremental forming deduced by sequential limit analysis. Int J Adv Manuf Technol 70, 2029–2041 (2014). https://doi.org/10.1007/s00170-013-5447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5447-2

Keywords

Navigation