Skip to main content

Anticancer Properties of Curcumin and Its Efficacy for Treating Central Nervous System Neoplasms

  • Chapter
  • First Online:
Anticancer plants: Properties and Application

Abstract

Curcuma longa, commonly known as turmeric is a rhizomatous member of the Zingiberaceae family. Its medicinal value was recognized thousands of years ago in Asia and was integrated into Ayurvedic and traditional Chinese medicine practices. Turmeric is used to treat ailments such as skin conditions, liver disorders, abdominal pain, and rheumatism. The application of modern analytics has discovered over 100 chemical compounds in the rhizome of turmeric. Curcuminoids are a group of chemical compounds found in turmeric that impart the medicinal properties to this plant. It has been proved that curcumin possesses numerous biochemical properties and is used as a potent antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. Further, data collected from human studies suggest that it exhibits extremely low toxicity, thus making it an attractive candidate for the treatment of various diseases including cancer. Current multimodal standard of care and treatment for individuals with brain malignancies often only extend survival minimally and must be improved. Data from preclinical in vitro and in vivo studies showed curcumin has efficacy for treating brain tumors including glioblastoma. Curcumin is thought to have anticancer properties by a variety of mechanisms including induction of G2/M cell cycle arrest, activating apoptotic pathways, and induction of autophagy. One obstacle preventing curcumin from being a clinically useful adjunct is its poor absorption and rapid metabolism. As such, many delivery systems have been studied to improve curcumin’s pharmacokinetic profile and improve its penetration through the blood-brain barrier. If pharmacokinetic barriers are overcome, curcumin is ready to enter clinical trials and improve treatment strategies for patients with brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB (2005) Curcumin suppresses the paclitaxel induced nuclear factor-B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11:7490–7498

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of Ikappa Balpha kinase and Akt activation. Mol Pharmacol 69:195–206

    PubMed  CAS  Google Scholar 

  • Ahmad MZ, Alkahtani SA, Akhter S, Ahmad FJ, Ahmad J, Akhtar MS, Mohsin N, Abdel-Wahab BA (2016) Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J Drug Target 24:273–293

    Article  PubMed  CAS  Google Scholar 

  • Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J, Ahuja A, Akbar M (2010) Strategy for effective brain drug delivery. Eur J Pharm Sci 40:385–403

    Article  PubMed  CAS  Google Scholar 

  • Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    Article  PubMed  CAS  Google Scholar 

  • Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246

    Article  PubMed  CAS  Google Scholar 

  • Atal CK, Dubey RK, Singh J (1985) Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther 232:258–262

    PubMed  CAS  Google Scholar 

  • Bachmeier BE, Iancu CM, Jochum M, Nerlich AG (2014) Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach. Expert Rev Anticancer Ther 5:149–163

    Article  Google Scholar 

  • Baud V, Karin M (2009) Is NF-ÎşB a good target for cancer therapy. Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baum L, Lam CWK, Cheung SK-K, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HFK, Goggins WB, Zee BCY, Cheng KF, Fong CYS, Wong A, Mok H, Chow MSS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CYL, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with alzheimer disease. J Clin Psychopharmacol 28:110–113

    Article  PubMed  Google Scholar 

  • Bayet-Robert M, Kwiatowski F, Leheurteur M, Gachon F, Planchat E, Abrial C, Mouret-Reynier MA, Durando X, Barthomeuf C, Chollet P (2014) Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 9:8–14

    Article  Google Scholar 

  • Beevers CS, Li F, Liu L, Huang S (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302:645–650

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK, Mukherjee B (2003) Plant medicines of Indian origin for wound healing activity: a review. Int J Low Extrem Wounds 2:25–39

    Article  PubMed  Google Scholar 

  • Chandran B, Goel A (2012) A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res 26:1719–1725

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Xu J, Johnson AC (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25:278–287

    Article  PubMed  CAS  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    PubMed  CAS  Google Scholar 

  • Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L (2012) Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 15:324–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhandapani KM, Mahesh VB, Brann DW (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFÎşB transcription factors. J Neurochem 102:522–538

    Article  PubMed  CAS  Google Scholar 

  • Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, He J, Alb A, John V, Pochampally R (2012) Curcumin-loaded Îł-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomed Nanotech Biol Med 8:440–451

    Article  CAS  Google Scholar 

  • Fatouros D, Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7:e32616

    Article  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–30

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  • Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomark Prev 14:120–125

    CAS  Google Scholar 

  • Gersey ZC, Rodriguez GA, Barbarite E, Sanchez A, Walters WM, Ohaeto KC, Komotar RJ, Graham RM (2017) Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 17:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, Agarwal MG (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58:2095–2099

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Slifirski P (2012) Curcumin and curcuminoids in quest for medicinal status. Acta Biochim Pol 59:201–212

    PubMed  CAS  Google Scholar 

  • Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39:283–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong JH, Ahn KS, Bae E, Jeon SS, Choi HY (2006) The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis 9:147–152

    Article  PubMed  CAS  Google Scholar 

  • Hossain MM, Banik NL, Ray SK (2012) Synergistic anticancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells. Neurochem Int 61:1102–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S (2017) Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng C Mater Biol Appl 77:1316–1326

    Article  PubMed  CAS  Google Scholar 

  • Jackson CL, Menke AE (1881) On certain substances obtained from turmeric. I. curcumin. Proc Am Acad Arts Sci 17:110–124

    Article  Google Scholar 

  • Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 561:54–62

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic SV, Boone CW, Steenken S, Trinoga M, Kaskey RB (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123:3064–3068

    Article  PubMed  CAS  Google Scholar 

  • Kakkar V, Singh S, Singla D, Kaur IP (2011) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 55:495–503

    Article  PubMed  CAS  Google Scholar 

  • Kanai M, Yoshimura K, Asada M, Imaizumi A, Suzuki C, Matsumoto S, Nishimura T, Mori Y, Masui T, Kawaguchi Y, Yanagihara K, Yazumi S, Chiba T, Guha S, Aggarwal BB (2010) A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 68:157–164

    Article  PubMed  CAS  Google Scholar 

  • Kanai M, Otsuka Y, Otsuka K, Sato M, Nishimura T, Mori Y, Kawaguchi M, Hatano E, Kodama Y, Matsumoto S, Murakami Y, Imaizumi A, Chiba T, Nishihira J, Shibata H (2013) A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin®) in cancer patients. Cancer Chemother Pharmacol 71:1521–1530

    Article  PubMed  CAS  Google Scholar 

  • Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Diff 11:448–457

    Article  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kocaadam B, Sanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57:2889–2895

    Article  PubMed  CAS  Google Scholar 

  • Kuttan R, Bhanumathy P, Nirmala K, George MC (1985) Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 29:197–202

    Article  PubMed  CAS  Google Scholar 

  • Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE (2006) Dose escalation of a curcuminoid formulation. BMC Compl Altern Med 6:10

    Article  CAS  Google Scholar 

  • Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA (2011) Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2014) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11:464–473

    Article  CAS  Google Scholar 

  • Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, Zhang X (2007) Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neuro-Oncol 85:263–270

    Article  CAS  Google Scholar 

  • Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2007) Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330:155–163

    Article  PubMed  CAS  Google Scholar 

  • Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ (2006) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol 60:171–177

    Article  PubMed  CAS  Google Scholar 

  • Mehanny M, Hathout RM, Geneidi AS, Mansour S (2016) Exploring the use of nanocarrier systems to deliver the magical molecule; curcumin and its derivatives. J Control Release 225:1–30

    Article  PubMed  CAS  Google Scholar 

  • Menon LG, Kuttan R, Kuttan G (1999) Anti-metastatic activity of curcumin and catechin. Cancer Lett 141:159–165

    Article  PubMed  CAS  Google Scholar 

  • MiĹ‚obedzka JV, Kostanecki S, Lampe V (1910) Zur Kenntnis des Curcumins. Ber Dtsch Chem Ges 43:2163–2170

    Article  Google Scholar 

  • Mishra B, Priyadarsini KI, Bhide MK, Kadam RM, Mohan H (2004) Reactions of superoxide radicals with curcumin: probable mechanisms by optical spectroscopy and EPR. Free Radic Res 38:355–362

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB (2002) Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 21:8852–8861

    Article  PubMed  CAS  Google Scholar 

  • Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE (2014) Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35:3365–3383

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, Mcdowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR (2004) Oscillations in NF-kappa B signaling control the dynamics of gene expression. Science 306:704–708

    Article  PubMed  CAS  Google Scholar 

  • Panahi Y, Ghanei M, Hajhashemi A, Sahebkar A (2016) Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J Diet Suppl 13:93–105

    Article  PubMed  CAS  Google Scholar 

  • Perry MC, Demeule M, RĂ©gina A, Moumdjian R, BĂ©liveau R (2010) Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res 54:1192–1201

    PubMed  CAS  Google Scholar 

  • Price LC, Buescher RW (1997) Kinetics of alkaline degradation of the food pigments curcumin and curcuminoids. J Food Sci 62:267–269

    Article  CAS  Google Scholar 

  • Priyadarsini KI (1997) Free radical reactions of curcumin in membrane models. Free Rad Biol Med 23:838–843

    Article  PubMed  CAS  Google Scholar 

  • Priyadarsini KI (2009) Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C 10:81–95

    Article  CAS  Google Scholar 

  • Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–20112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prusty BK, Das BC (2005) Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 113:951–960

    Article  PubMed  CAS  Google Scholar 

  • Punfa W, Yodkeeree S, Pitchakarn P, Ampasavate C, Limtrakul P (2012) Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sinica 33:823–831

    Article  CAS  Google Scholar 

  • Purkayastha S, Berliner A, Fernando SS, Ranasinghe B, Ray I, Tariq H, Banerjee P (2009) Curcumin blocks brain tumor formation. Brain Res 1266:130–138

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Cao S, Steadman KJ, Wei M, Parekh HS (2012) Native and β-cyclodextrin-enclosed curcumin: entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv 19:346–353

    Article  PubMed  CAS  Google Scholar 

  • Rao EV, Sudheer P (2011) Revisiting curcumin chemistry part I: a new strategy for the synthesis of curcuminoids. Indian J Pharm Sci 73:262–270

    PubMed  PubMed Central  CAS  Google Scholar 

  • Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71:23–43

    Article  PubMed  CAS  Google Scholar 

  • Schraufstatter E, Bernt H (1949) Antibacterial action of curcumin and related compounds. Nature 164:456

    Article  PubMed  CAS  Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230

    Article  PubMed  CAS  Google Scholar 

  • Sharma RA, Mclelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900

    PubMed  CAS  Google Scholar 

  • Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854

    Article  PubMed  CAS  Google Scholar 

  • Shigemitsu K, Tsujishita Y, Hara K, Nanahoshi M, Avruch J, Yonezawa K (1999) Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem 274:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Aggarwal BB (1995) Activation of transcription factor NF-B is suppressed by curcumin (Diferuloyl methane). J Biol Chem 270:24995–25000

    Article  PubMed  CAS  Google Scholar 

  • Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R (2005) Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IÎşB kinase and nuclear factor ÎşB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104:879–890

    Article  PubMed  CAS  Google Scholar 

  • Sun YM, Zhang HY, Chen DZ, Liu C-B (2002) Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org Lett 4:2909–2911

    Article  PubMed  CAS  Google Scholar 

  • Thaloor D, Singh AK, Sidhu GS, Prasad PV, Kleinman HK, Maheshwari RK (1998) Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth Diff 9:305–312

    PubMed  CAS  Google Scholar 

  • Tomren MA, Másson M, Loftsson T, Tønnesen HH (2007) Studies on curcumin and curcuminoids. Int J Pharm 338:27–34

    Article  PubMed  CAS  Google Scholar 

  • Tønnesen HH, Karlsen J, Mostad A, Samuelsson B, Enzell CR, Berg J-E (1982) Structural studies of curcuminoids. I. The crystal structure of curcumin. Acta Chem Scand 36:475–479

    Article  Google Scholar 

  • Tsai YM, Chien CF, Lin LC, Tsai TH (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm 416:331–338

    Article  PubMed  CAS  Google Scholar 

  • Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, Karin M, Chrousos GP (2015) Dynamic aberrant NF-kappa B spurs tumorigenesis: a new model encompassing the microenvironment. Cytokine Growth Factor Rev 26:389–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Gu YT, Qin GH, Zhong L, Meng YN (2013) Curcumin ameliorates the permeability of the blood–brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells. J Mol Neurosci 51:344–351

    Article  PubMed  CAS  Google Scholar 

  • Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M, Tridandapani S, Anant S, Kuppusamy P (2014) Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating akt and p38 mAPK. Cancer Biol Ther 6:178–184

    Article  Google Scholar 

  • Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW, Kwon TK (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24:1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, Wang H, Zhou Q, Yu S (2011) PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem 59:9280–9289

    Article  PubMed  CAS  Google Scholar 

  • Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010a) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351:19–29

    Article  PubMed  CAS  Google Scholar 

  • Yallapu MM, Jaggi M, Chauhan SC (2010b) Poly(β-cyclodextrin)/curcumin self-assembly: a novel approach to improve curcumin delivery and its therapeutic efficacy in prostate cancer cells. Macromol Biosci 10:1141–1151

    Article  PubMed  CAS  Google Scholar 

  • Yodkeeree S, Chaiwangyen W, Garbisa S, Limtrakul P (2009) Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem 20:87–95

    Article  PubMed  CAS  Google Scholar 

  • Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schröder R, Simões-Pires A, Battastini AMO, Moreira JCF (2012) The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem 23:591–601

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Ekmekcioglu S, Walch ET, Tang C-H, Grimm EA (2004) Inhibition of nuclear factor-kappa B and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res 14:165–171

    Article  PubMed  CAS  Google Scholar 

  • Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, Liang Z (2012) Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy. Cancer Sci 103:684–690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klinger, N.V., Mittal, S. (2018). Anticancer Properties of Curcumin and Its Efficacy for Treating Central Nervous System Neoplasms. In: Akhtar, M., Swamy, M. (eds) Anticancer plants: Properties and Application. Springer, Singapore. https://doi.org/10.1007/978-981-10-8548-2_15

Download citation

Publish with us

Policies and ethics