Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40(1–2):211–216
CAS
CrossRef
Google Scholar
Almasieh M, Zhou Y, Kelly ME, Casanova C, Di Polo A (2010) Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell Death Dis 1:e27
CAS
CrossRef
Google Scholar
Amara IB, Troudi A, Soudani N, Guermazi F, Zeghal N (2012) Toxicity of methimazole on femoral bone in suckling rats: alleviation by selenium. Exp Toxicol Pathol 64:187–195
CrossRef
Google Scholar
Artis AS, Bitiktas S, Taşkın E, Dolu N, Liman N, Suer C (2012) Experimental hypothyroidism delays field excitatory post-synaptic potentials and disrupts hippocampal long-term potentiation in the dentate gyrus of hippocampal formation and Y-maze performance in adult rats. J Neuroendocrinol 24:422–433
CAS
CrossRef
Google Scholar
Bancila M, Copin JC, Daali Y, Schatlo B, Gasche Y, Bijlenga P (2011) Two structurally different T-type Ca2+ channel inhibitors, mibefradil and pimozide, protect CA1 neurons from delayed death after global ischemia in rats. Fundam Clin Pharmacol 25(4):469–478
CAS
CrossRef
Google Scholar
Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38(2 Suppl):674–676
CAS
CrossRef
Google Scholar
Berliocchi L, Bano D, Nicotera P (2005) Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci 360(1464):2255–2258
CAS
CrossRef
Google Scholar
Bloc A, Cens T, Cruz H, Dunant Y (2000) Zinc-induced changes in ionic currents of clonal rat pancreatic -cells: activation of ATP-sensitive K+ channels. J Physiol 529(Pt 3):723–734
CAS
CrossRef
Google Scholar
Cano-Europa E, Blas-Valdivia V, Franco-Colin M, Gallardo-Casa CA, Ortiz-Butron R (2011) Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney. Acta Histochem 113:1–5
CAS
CrossRef
Google Scholar
Cooper DS (1984) Antithyroid drugs. N Engl J Med 311:1353–1362
CAS
CrossRef
Google Scholar
Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729
CAS
CrossRef
Google Scholar
Davis SM, Pennypacker KR (2016) Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 107:3–32. In press
Google Scholar
Di Cesare Mannelli L, Tenci B, Zanardelli M, Failli P, Ghelardini C (2015) α7 nicotinic receptor promotes the neuroprotective functions of astrocytes against oxaliplatin neurotoxicity. Neural Plast 2015:396908
CrossRef
Google Scholar
Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36(2):96–108
CAS
CrossRef
Google Scholar
Espada S, Rojo AI, Salinas M, Cuadrado A (2009) The muscarinic M1 receptor activates Nrf2 through a signaling cascade that involves protein kinase C and inhibition of GSK-3beta: connecting neurotransmission with neuroprotection. J Neurochem 110(3):1107–1119
CAS
CrossRef
Google Scholar
Fan YY, Hu WW, Nan F, Chen Z (2017) Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 107:43–56. In press
CAS
CrossRef
Google Scholar
Farías GG, Godoy JA, Hernández F, Avila J, Fisher A, Inestrosa NC (2004) M1 muscarinic receptor activation protects neurons from beta-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol Dis 17(2):337–348
CrossRef
Google Scholar
Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437
CAS
CrossRef
Google Scholar
Gauthier S, Rountree S, Finn B, LaPlante B, Weber E, Oltersdorf T (2015) Effects of the acetylcholine release agents ST101 with donepezil in Alzheimer’s disease: a randomized phase 2 study. J Alzhemiers Dis 48(2):473–481
CAS
CrossRef
Google Scholar
Genter MB, Deamer NJ, Blake BL, Wesley DS, Levi PE (1995) Olfactory toxicity of methimazole: dose–response and structure–activity studies and characterization of flavincontaining monooxygenase activity in the Long-Evans rat olfactory mucosa. Toxicol Pathol 23:477–486
CAS
CrossRef
Google Scholar
Han F, Shioda N, Moriguchi S, Qin ZH, Fukunaga K (2008) The vanadium (IV) compound rescues septohippocampal cholinergic neurons from neurodegeneration in olfactory bulbectomized mice. Neuroscience 151:671–679
CAS
CrossRef
Google Scholar
Hijioka M, Matsushita H, Ishibashi H, Hisatsune A, Isohama Y, Katsuki H (2012) α7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice. Neuroscience 222:10–19
CAS
CrossRef
Google Scholar
Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348
CAS
CrossRef
Google Scholar
Ito C, Im WB, Takagi H, Takahashi M, Tsuzuki K, Liou SY, Kunihara M (1994) U-92032, a T-type Ca2+ channel blocker and antioxidant, reduces neuronal ischemic injuries. Eur J Pharmacol 257(3):203–210
CAS
CrossRef
Google Scholar
Kaneko S, Maeda T, Kume T, Kochiyama H, Akaike A, Shimohama S, Kimura J (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res 765(1):135–140
CAS
CrossRef
Google Scholar
Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276(17):13541–13546
CAS
CrossRef
Google Scholar
Kita Y, Ago Y, Takano E, Fukuda A, Takuma K, Narsuda T (2013) Galantamine increases hippocampal insulin-like growth factor 2 expression via a7 nicotinic acetylcholine receptors in mice. Psychopharmacologia 225(3):543–551
CAS
CrossRef
Google Scholar
Kita Y, Ago Y, Higashino K, Asada K, Takano E, Takuma K, Matsuda T (2014) Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and α7 nicotinic receptors in mice. Int J Neuropsychopharmacol 17(12):1957–1968
CAS
CrossRef
Google Scholar
Kojima M, Kim JS, Uchimurea H, Hirano M, Nakahara T, Matsumoto T (1981) Effect of thyroidectomy on choline acetyltransferase in rat hypothalamic nuclei. Brain Res 209:227–230
CAS
CrossRef
Google Scholar
Liu JH, Bijlenga P, Occhiodoro T, Fischer-Lougheed J, Bader CR, Bernheim L (1999) Mibefradil (Ro 40-5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts. Br J Pharmacol 126(1):245–250
CAS
CrossRef
Google Scholar
Lorrio S, Sobrado M, Arias E, Roda JM, García AG, López MG (2007) Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J Pharmacol Exp Ther 322(2):591–599
CAS
CrossRef
Google Scholar
Ma K, Yang LM, Chen HZ, Lu Y (2013) Activation of muscarinic receptors inhibits glutamate-induced GSK-3β overactivation in PC12 cells. Acta Pharmacol Sin 34(7):886–892
CAS
CrossRef
Google Scholar
McNulty MM, Hanck DA (2004) State-dependent mibefradil block of Na+ channels. Mol Pharmacol 66(6):1652–1661
CAS
PubMed
Google Scholar
Melancon BJ, Tarr JC, Panarese JD, Wood MR, Lindsley CW (2013) Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer’s disease. Drug Discov Today 18(23–24):1185–1199
CAS
CrossRef
Google Scholar
Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathway in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201
CAS
CrossRef
Google Scholar
Moriguchi S, Zhao X, Marszalec W, Yeh JZ, Fukunaga K, Narahashi T (2009) Nefiracetam and galantamine modulation of excitatory and inhibitory synaptic transmission via stimulation of neuronal nicotinic acetylcholine receptors in rat cortical neurons. Neuroscience 160(2):484–491
CAS
CrossRef
Google Scholar
Moriguchi S, Shioda N, Yamamoto Y, Tagashira H, Fukunaga K (2012) The T-type voltage-gated calcium channel as a molecular target of the novel cognitive enhancer ST101: enhancement of long-term potentiation and CaMKII autophosphorylation in rat cortical slices. J Neurochem 121:44–53
CAS
CrossRef
Google Scholar
Navarro E, Buendia I, Parada E, León R, Jansen-Duerr P, Pircher H, Egea J, Lopez MG (2015) Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochem Pharmacol 97(4):473–481
CAS
CrossRef
Google Scholar
Niture SK, Jaiswal AK (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem 287(13):9873–9886
CAS
CrossRef
Google Scholar
Noreen H, Yabuki Y, Fukunaga K (2017) Novel spiroimidazopyridine derivative SAK3 improves methimazole-induced cognitive deficits in mice. Neurochem Int 108:91–99. In press
CAS
CrossRef
Google Scholar
Oh JD, Butcher LL, Woolf NJ (1991) Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain relation to nerve growth factor receptor. Brain Res Dev Brain Res 59:133–142
CAS
CrossRef
Google Scholar
Pandya AA, Yakel JL (2013) Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol 86(8):1054–1062
CAS
CrossRef
Google Scholar
Parisa SD, Fahimeh J (2015) Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multi-walled carbon nanotube film. Bioelectrochemistry 101:66–74
CrossRef
Google Scholar
Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161
CAS
CrossRef
Google Scholar
Qian J, Zhang JM, Lin LL, Dong WZ, Cheng YQ, Su DF, Liu AJ (2015) A combination of neostigmine and anisodamine protects against ischemic stroke by activating α7nAChR. Int J Stroke 10(5):737–744
CrossRef
Google Scholar
Robinson L, Platt B, Riedel G (2011) Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 221:443–465
CAS
CrossRef
Google Scholar
Sadigh-Eteghad S, Talebi M, Mahnoudi J, Babri S, Shanehbandi D (2015) Selective activation of a7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice. Neuroscience 298:81–93
CAS
CrossRef
Google Scholar
Sawin S, Brodish P, Carter CS, Stanton ME, Lau C (1998) Development of cholinergic neurons in rat brain regions: dose-dependent effects of propylthiouracil-induced hypothyroidism. Neurotoxicol Teratol 20:627–635
CAS
CrossRef
Google Scholar
Schwob JE, Szumowski KEM, Stasky AA (1992) Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. J Neurosci 12:3896–3919
CAS
CrossRef
Google Scholar
Shaw S, Bencherif M, Marrero MB (2002) Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1-42) amyloid. J Biol Chem 277(47):44920–44924
CAS
CrossRef
Google Scholar
Shin SS, Dixon CE (2015) Targeting α7 nicotinic acetylcholine receptors: a future potential for neuroprotection from traumatic brain injury. Neural Regen Res 10(10):1552–1554
CrossRef
Google Scholar
Shioda N, Yamamoto Y, Han F, Moriguchi S, Yamaguchi Y, Hino M, Fukunaga K (2010) A novel cognitive enhancer, ZSET1446/ST101, promotes hippocampal neurogenesis and ameliorates depressive behavior in olfactory bulbectomized mice. J Pharmacol Exp Ther 333(1):43–50
CAS
CrossRef
Google Scholar
Suzukawa K, Kondo K, Kanaya K, Sakamoto T, Watanabe K, Ushio M, Kaga K, Yamasoba T (2011) Age-related changes of the regeneration mode in the mouse peripheral olfactory system following olfactotoxic drug methimazole-induced damage. J Comp Neurol 519:2154–2174
CAS
CrossRef
Google Scholar
Takada-Takatori Y, Kume T, Izumi Y, Ohgi Y, Niidome T, Fujii T, Sugimoto H, Akaike A (2009) Roles of nicotinic receptors in acetylcholinesterase inhibitor-induced neuroprotection and nicotinic receptor up-regulation. Biol Pharm Bull 32(3):318–324
CAS
CrossRef
Google Scholar
Tan PP, Yuan HH, Zhu X, Cui YY, Li H, Feng XM, Qiu Y, Chen HZ, Zhou W (2014) Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models. CNS Neurosci Ther 20(3):227–236
CAS
CrossRef
Google Scholar
Tong H, Chen GH, Liu RY, Zhou JN (2007) Age-related learning and memory impairments in adult-onset hypothyroidism in Kunming mice. Physiol Behav 91:290–298
CAS
CrossRef
Google Scholar
Wu X, Liu H, Zhu X, Shen J, Shi Y, Liu Z, Gu M, Song Z (2013) Efficacy and safety of methimazole ointment for patients with hyperthyroidism. Environ Toxicol Pharmacol 36:1109–1112
CAS
CrossRef
Google Scholar
Yabuki Y, Jing X, Fukunaga K (2017a) The T-type calcium channel enhancer SAK3 inhibits neuronal death following transient brain ischemia via nicotinic acetylcholine receptor stimulation. Neurochem Int 108:272–281. https://doi.org/10.1016/j.neuint.2017.04.015
CAS
CrossRef
PubMed
Google Scholar
Yabuki Y, Matsuo K, Izumi H, Haga H, Yoshida T, Wakamori M, Kakehi A, Sakimura K, Fukuda T, Fukunaga K (2017b) Pharmacological properties of SAK3, a novel T-type voltage-gated Ca2+ channel enhancer. Neuropharmacology 117:1–13
CAS
CrossRef
Google Scholar
Yakel JL (2013) Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch 465(4):441–450
CAS
CrossRef
Google Scholar
Yamamoto Y, Fuknaga K (2013) Donepezil rescues the medial septum cholinergic neurons via nicotinic ACh receptor stimulation in olfactory bulbectomized mice. Adv Alzheimer’s Dis 2(4):161–170
CAS
CrossRef
Google Scholar
Yamamoto Y, Shioda N, Han F, Moriguchi S, Fukunaga K (2013) Novel cognitive enhancer ST101 enhances acetylcholine release in mouse dorsal hippocampus through T-type voltage-gated calcium channel stimulation. J Pharmacol Sci 121:212–226
CAS
CrossRef
Google Scholar
Zdanowski R, Krzyżowska M, Ujazdowska D, Lewicka A, Lewicki S (2015) Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways. Cent Eur J Immunol 40(3):373–379
CAS
CrossRef
Google Scholar