Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G (2015) Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 9:147. https://doi.org/10.3389/fnins.2015.00147
CrossRef
PubMed Central
PubMed
Google Scholar
Arranz AM, Gottlieb M, Pérez-Cerdá F, Matute C (2010) Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia. Neurobiol Dis 37(1):156–165. https://doi.org/10.1016/j.nbd.2009.09.019
CAS
CrossRef
PubMed
Google Scholar
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA (2006) Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. FASEB J 20(12):2093–2101. https://doi.org/10.1096/fj.06-6191com
CAS
CrossRef
PubMed
Google Scholar
Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 94(8):4155–4160
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Awtry TL, Werling LL (2003) Acute and chronic effects of nicotine on serotonin uptake in prefrontal cortex and hippocampus of rats. Synapse 50(3):206–211. https://doi.org/10.1002/syn.10259
CAS
CrossRef
PubMed
Google Scholar
Beschorner R, Simon P, Schauer N, Mittelbronn M, Schluesener HJ, Trautmann K, Dietz K, Meyermann R (2007) Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia. Histopathology 50(7):897–910. https://doi.org/10.1111/j.1365-2559.2007.02703.x
CAS
CrossRef
PubMed
Google Scholar
Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61(1):62–70. https://doi.org/10.1002/glia.22372
CrossRef
PubMed
Google Scholar
Bordia T, McGregor M, Papke RL, Decker MW, McIntosh JM, Quik M (2015) The α7 nicotinic receptor agonist ABT-107 protects against nigrostriatal damage in rats with unilateral 6-hydroxydopamine lesions. Exp Neurol 263:277–284. https://doi.org/10.1016/j.expneurol.2014.09.015
CAS
CrossRef
PubMed
Google Scholar
Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25(6):317–324. https://doi.org/10.1016/j.tips.2004.04.006
CAS
CrossRef
PubMed
Google Scholar
Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214
CAS
CrossRef
PubMed
Google Scholar
Danielson K, Truman P, Kivell BM (2011) The effects of nicotine and cigarette smoke on the monoamine transporters. Synapse 65(9):866–879. https://doi.org/10.1002/syn.20914
CAS
CrossRef
PubMed
Google Scholar
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. https://doi.org/10.1038/nn1472
CAS
CrossRef
PubMed
Google Scholar
De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L (2005) Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2(1):4. https://doi.org/10.1186/1742-2094-2-4
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Di Cesare Mannelli L, Pacini A, Matera C, Zanardelli M, Mello T, De Amici M, Dallanoce C, Ghelardini C (2014) Involvement of α7 nAChR subtype in rat oxaliplatin-induced neuropathy: effects of selective activation. Neuropharmacology 79:37–48. https://doi.org/10.1016/j.neuropharm.2013.10.034
CAS
CrossRef
PubMed
Google Scholar
Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375(6532):599–603. https://doi.org/10.1038/375599a0
CAS
CrossRef
PubMed
Google Scholar
Fernandes A, Miller-Fleming L, Pais TF (2014) Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 71(20):3969–3985. https://doi.org/10.1007/s00018-014-1670-8
CAS
CrossRef
PubMed
Google Scholar
Figiel M, Maucher T, Rozyczka J, Bayatti N, Engele J (2003) Regulation of glial glutamate transporter expression by growth factors. Exp Neurol 183(1):124–135
CAS
CrossRef
PubMed
Google Scholar
Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhurst S, Gelbard HA (1996) Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 271(26):15303–15306
CAS
CrossRef
PubMed
Google Scholar
Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47. https://doi.org/10.1186/1750-1326-4-47
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Freilich RW, Woodbury ME, Ikezu T (2013) Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 8(11):e79416. https://doi.org/10.1371/journal.pone.0079416
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Freitas K, Ghosh S, Ivy Carroll F, Lichtman AH, Imad Damaj M (2013) Effects of α7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology 65:156–164. https://doi.org/10.1016/j.neuropharm.2012.08.022
CAS
CrossRef
PubMed
Google Scholar
Garrido-Gil P, Rodriguez-Pallares J, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL (2013) Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Exp Neurol 250:384–396. https://doi.org/10.1016/j.expneurol.2013.10.013
CAS
CrossRef
PubMed
Google Scholar
Giunta B, Ehrhart J, Townsend K, Sun N, Vendrame M, Shytle D, Tan J, Fernandez F (2004) Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res Bull 64(2):165–170. https://doi.org/10.1016/j.brainresbull.2004.06.008
CAS
CrossRef
PubMed
Google Scholar
Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74(6):363–396. https://doi.org/10.1016/j.pneurobio.2004.09.006
CAS
CrossRef
PubMed
Google Scholar
Hawkins BT, Egleton RD, Davis TP (2005) Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am J Physiol Heart Circ Physiol 289(1):H212–H219. https://doi.org/10.1152/ajpheart.01210.2004
CAS
CrossRef
PubMed
Google Scholar
Hawkins JL, Denson JE, Miley DR, Durham PL (2015) Nicotine stimulates expression of proteins implicated in peripheral and central sensitization. Neuroscience 290C:115–125. https://doi.org/10.1016/j.neuroscience.2015.01.034
CAS
CrossRef
Google Scholar
Henkel JS, Beers DR, Zhao W, Appel SH (2009) Microglia in ALS: the good, the bad, and the resting. J NeuroImmune Pharmacol 4(4):389–398. https://doi.org/10.1007/s11481-009-9171-5
CrossRef
PubMed
Google Scholar
Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75(3):965–972
CAS
CrossRef
PubMed
Google Scholar
Hou Y, Xie G, Liu X, Li G, Jia C, Xu J, Wang B (2016) Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice. Psychopharmacology (Berl) 233(5):905–916. https://doi.org/10.1007/s00213-015-4169-6
CAS
CrossRef
Google Scholar
Itoh H, Toyohira Y, Ueno S, Saeki S, Zhang H, Furuno Y, Takahashi K, Tsutsui M, Hachisuka K, Yanagihara N (2010) Upregulation of norepinephrine transporter function by prolonged exposure to nicotine in cultured bovine adrenal medullary cells. Naunyn Schmiedeberg’s Arch Pharmacol 382(3):235–243. https://doi.org/10.1007/s00210-010-0540-7
CAS
CrossRef
Google Scholar
Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360(6403):467–471. https://doi.org/10.1038/360467a0
CAS
CrossRef
PubMed
Google Scholar
Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31(12):653–659. https://doi.org/10.1016/j.tins.2008.09.003
CAS
CrossRef
PubMed
Google Scholar
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. https://doi.org/10.1152/physrev.00011.2010
CAS
CrossRef
PubMed
Google Scholar
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. https://doi.org/10.1523/JNEUROSCI.3257-09.2009
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276(17):13541–13546. https://doi.org/10.1074/jbc.M008035200
CAS
CrossRef
PubMed
Google Scholar
Kitamura T, Tsuchihashi Y, Fujita S (1978) Initial response of silver-impregnated “resting microglia” to stab wounding in rabbit hippocampus. Acta Neuropathol 44(1):31–39
CAS
CrossRef
PubMed
Google Scholar
Kiyota T, Ingraham KL, Jacobsen MT, Xiong H, Ikezu T (2011) FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc Natl Acad Sci U S A 108(49):E1339–E1348. https://doi.org/10.1073/pnas.1102349108
CrossRef
PubMed Central
PubMed
Google Scholar
Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095. nature05704 [pii] 391038/nature05704
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lai AY, Todd KG (2008) Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 56(3):259–270. https://doi.org/10.1002/glia.20610
CrossRef
PubMed
Google Scholar
Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605. https://doi.org/10.1523/JNEUROSCI.5360-06.2007
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170
CAS
CrossRef
PubMed
Google Scholar
Lee ES, Sidoryk M, Jiang H, Yin Z, Aschner M (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110(2):530–544. https://doi.org/10.1111/j.1471-4159.2009.06105.x
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Lenhard T, Schober A, Suter-Crazzolara C, Unsicker K (2002) Fibroblast growth factor-2 requires glial-cell-line-derived neurotrophic factor for exerting its neuroprotective actions on glutamate-lesioned hippocampal neurons. Mol Cell Neurosci 20(2):181–197
CAS
CrossRef
PubMed
Google Scholar
Lim DK, Kim HS (2001) Changes in the glutamate release and uptake of cerebellar cells in perinatally nicotine-exposed rat pups. Neurochem Res 26(10):1119–1125
CAS
CrossRef
PubMed
Google Scholar
Lim DK, Kim HS (2003) Opposite modulation of glutamate uptake by nicotine in cultured astrocytes with/without cAMP treatment. Eur J Pharmacol 476(3):179–184
CAS
CrossRef
PubMed
Google Scholar
Liu Y, Zeng X, Hui Y, Zhu C, Wu J, Taylor DH, Ji J, Fan W, Huang Z, Hu J (2015) Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease. Neuropharmacology 91:87–96. https://doi.org/10.1016/j.neuropharm.2014.11.028
CAS
CrossRef
PubMed
Google Scholar
López-Redondo F, Nakajima K, Honda S, Kohsaka S (2000) Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Brain Res Mol Brain Res 76(2):429–435
CrossRef
PubMed
Google Scholar
Maggio R, Riva M, Vaglini F, Fornai F, Molteni R, Armogida M, Racagni G, Corsini GU (1998) Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem 71(6):2439–2446
CAS
CrossRef
PubMed
Google Scholar
Maouche K, Medjber K, Zahm JM, Delavoie F, Terryn C, Coraux C, Pons S, Cloëz-Tayarani I, Maskos U, Birembaut P, Tournier JM (2013) Contribution of α7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure. Proc Natl Acad Sci U S A 110(10):4099–4104. https://doi.org/10.1073/pnas.1216939110
CrossRef
PubMed Central
PubMed
Google Scholar
Mashimo M, Okubo Y, Yamazawa T, Yamasaki M, Watanabe M, Murayama T, Iino M (2010) Inositol 1,4,5-trisphosphate signaling maintains the activity of glutamate uptake in Bergmann glia. Eur J Neurosci 32(10):1668–1677. https://doi.org/10.1111/j.1460-9568.2010.07452.x
CrossRef
PubMed
Google Scholar
Middleton LS, Cass WA, Dwoskin LP (2004) Nicotinic receptor modulation of dopamine transporter function in rat striatum and medial prefrontal cortex. J Pharmacol Exp Ther 308(1):367–377. https://doi.org/10.1124/jpet.103.055335
CAS
CrossRef
PubMed
Google Scholar
Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101(3):249–255
CAS
PubMed
Google Scholar
Moehle MS, West AB (2015) M1 and M2 immune activation in Parkinson’s disease: foe and ally? Neuroscience 302:59–73. https://doi.org/10.1016/j.neuroscience.2014.11.018
CAS
CrossRef
PubMed
Google Scholar
Moon JH, Kim SY, Lee HG, Kim SU, Lee YB (2008) Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar beta amyloid peptide (1-42)-stimulated microglia. Exp Mol Med 40(1):11–18. https://doi.org/10.3858/emm.2008.40.1.11
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Morioka N, Abdin MJ, Kitayama T, Morita K, Nakata Y, Dohi T (2008) P2X(7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport. Glia 56(5):528–538. https://doi.org/10.1002/glia.20634
CrossRef
PubMed
Google Scholar
Morioka N, Tokuhara M, Harano S, Nakamura Y, Hisaoka-Nakashima K, Nakata Y (2013) The activation of P2Y6 receptor in cultured spinal microglia induces the production of CCL2 through the MAP kinases-NF-κB pathway. Neuropharmacology 75C:116–125. https://doi.org/10.1016/j.neuropharm.2013.07.017
CAS
CrossRef
Google Scholar
Morioka N, Tokuhara M, Nakamura Y, Idenoshita Y, Harano S, Zhang FF, Hisaoka-Nakashima K, Nakata Y (2014) Primary cultures of rat cortical microglia treated with nicotine increases in the expression of excitatory amino acid transporter 1 (GLAST) via the activation of the α7 nicotinic acetylcholine receptor. Neuroscience 258:374–384. https://doi.org/10.1016/j.neuroscience.2013.11.044
CAS
CrossRef
PubMed
Google Scholar
Morioka N, Harano S, Tokuhara M, Idenoshita Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y (2015) Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Res 1625:111–120. https://doi.org/10.1016/j.brainres.2015.08.029
CAS
CrossRef
PubMed
Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. https://doi.org/10.1126/science.1110647
CAS
CrossRef
PubMed
Google Scholar
Noda M, Kobayashi AI (2017) Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. J Physiol Sci 67(1):235–245. https://doi.org/10.1007/s12576-016-0460-5
CAS
CrossRef
PubMed
Google Scholar
Noda M, Nakanishi H, Akaike N (1999) Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience 92(4):1465–1474
CAS
CrossRef
PubMed
Google Scholar
Noda M, Takii K, Parajuli B, Kawanokuchi J, Sonobe Y, Takeuchi H, Mizuno T, Suzumura A (2014) FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway. J Neuroinflammation 11:76. https://doi.org/10.1186/1742-2094-11-76
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Nolte C, Möller T, Walter T, Kettenmann H (1996) Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience 73(4):1091–1107
CAS
CrossRef
PubMed
Google Scholar
Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, Soares MP, López MG (2013) The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19(11):1135–1148. https://doi.org/10.1089/ars.2012.4671
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Persson M, Brantefjord M, Hansson E, Rönnbäck L (2005) Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 51(2):111–120. https://doi.org/10.1002/glia.20191
CrossRef
PubMed
Google Scholar
Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360(6403):464–467. https://doi.org/10.1038/360464a0
CAS
CrossRef
PubMed
Google Scholar
Poitry-Yamate CL, Vutskits L, Rauen T (2002) Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function. J Neurochem 82(4):987–997
CAS
CrossRef
PubMed
Google Scholar
Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92(3):293–315. https://doi.org/10.1016/j.pneurobio.2010.06.009
CrossRef
PubMed
Google Scholar
Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27(40):10714–10721. https://doi.org/10.1523/JNEUROSCI.1922-07.2007
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Robinson MB, Dowd LA (1997) Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv Pharmacol 37:69–115
CAS
CrossRef
PubMed
Google Scholar
Rock RB, Gekker G, Aravalli RN, Hu S, Sheng WS, Peterson PK (2008) Potentiation of HIV-1 expression in microglial cells by nicotine: involvement of transforming growth factor-beta 1. J NeuroImmune Pharmacol 3(3):143–149. https://doi.org/10.1007/s11481-007-9098-7
CrossRef
PubMed
Google Scholar
Rogers SW, Gregori NZ, Carlson N, Gahring LC, Noble M (2001) Neuronal nicotinic acetylcholine receptor expression by O2A/oligodendrocyte progenitor cells. Glia 33(4):306–313
CAS
CrossRef
PubMed
Google Scholar
Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D (2015) Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice. Neuroscience 298:81–93. https://doi.org/10.1016/j.neuroscience.2015.04.017
CAS
CrossRef
PubMed
Google Scholar
Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443. https://doi.org/10.1146/annurev.ne.16.030193.002155
CAS
CrossRef
PubMed
Google Scholar
Severance EG, Zhang H, Cruz Y, Pakhlevaniants S, Hadley SH, Amin J, Wecker L, Reed C, Cuevas J (2004) The alpha7 nicotinic acetylcholine receptor subunit exists in two isoforms that contribute to functional ligand-gated ion channels. Mol Pharmacol 66(3):420–429. https://doi.org/10.1124/mol.104.000059
CAS
CrossRef
PubMed
Google Scholar
Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP, Schwartz M (2005) Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 92(5):997–1009. https://doi.org/10.1111/j.1471-4159.2004.02954.x
CAS
CrossRef
PubMed
Google Scholar
Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C (2017) Autophagy plays an important role in anti-inflammatory mechanisms stimulated by Alpha7 nicotinic acetylcholine receptor. Front Immunol 8:553. https://doi.org/10.3389/fimmu.2017.00553
CrossRef
PubMed Central
PubMed
Google Scholar
Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci 17(23):9212–9219
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89(2):337–343. https://doi.org/10.1046/j.1471-4159.2004.02347.x
CAS
CrossRef
PubMed
Google Scholar
Smith TL, Navratilova E (1999) Increased calcium/calmodulin protein kinase activity in astrocytes chronically exposed to ethanol: influences on glutamate transport. Neurosci Lett 269(3):145–148
CAS
CrossRef
PubMed
Google Scholar
Son JH, Winzer-Serhan UH (2009) Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus. Brain Res 1278:1–14. https://doi.org/10.1016/j.brainres.2009.04.046
CAS
CrossRef
PubMed
Google Scholar
Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266
CAS
CrossRef
PubMed
Google Scholar
Sun Y, Li Q, Gui H, Xu DP, Yang YL, Su DF, Liu X (2013) MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 23(11):1270–1283. https://doi.org/10.1038/cr.2013.116
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Suzuki K, Ikegaya Y, Matsuura S, Kanai Y, Endou H, Matsuki N (2001) Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J Cell Sci 114(Pt 20):3717–3725
CAS
PubMed
Google Scholar
Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24(1):1–7. 24/1/1 [pii] 10.1523/JNEUROSCI.3792-03.2004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andrä M, Matsubayashi H, Sakai N, Kohsaka S, Inoue K, Nakata Y (2006) Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83(8):1461–1470. https://doi.org/10.1002/jnr.20850
CAS
CrossRef
PubMed
Google Scholar
Suzuki S, Kawamata J, Matsushita T, Matsumura A, Hisahara S, Takata K, Kitamura Y, Kem W, Shimohama S (2013) 3-[(2,4-Dimethoxy)benzylidene]-anabaseine dihydrochloride protects against 6-hydroxydopamine-induced parkinsonian neurodegeneration through α7 nicotinic acetylcholine receptor stimulation in rats. J Neurosci Res 91(3):462–471. https://doi.org/10.1002/jnr.23160
CAS
CrossRef
PubMed
Google Scholar
Takarada T, Nakamichi N, Kawagoe H, Ogura M, Fukumori R, Nakazato R, Fujikawa K, Kou M, Yoneda Y (2012) Possible neuroprotective property of nicotinic acetylcholine receptors in association with predominant upregulation of glial cell line-derived neurotrophic factor in astrocytes. J Neurosci Res 90(11):2074–2085. https://doi.org/10.1002/jnr.23101
CAS
CrossRef
PubMed
Google Scholar
Takata K, Kitamura Y, Saeki M, Terada M, Kagitani S, Kitamura R, Fujikawa Y, Maelicke A, Tomimoto H, Taniguchi T, Shimohama S (2010) Galantamine-induced amyloid-{beta} clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 285(51):40180–40191. https://doi.org/10.1074/jbc.M110.142356
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702
CAS
CrossRef
PubMed
Google Scholar
Thomas WE (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev 17(1):61–74
CAS
CrossRef
PubMed
Google Scholar
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388. https://doi.org/10.1038/nature01339
CAS
CrossRef
PubMed
Google Scholar
Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22(5):1763–1771
CAS
PubMed
PubMed Central
Google Scholar
Wu LJ, Wu G, Akhavan Sharif MR, Baker A, Jia Y, Fahey FH, Luo HR, Feener EP, Clapham DE (2012) The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat Neurosci 15(4):565–573. https://doi.org/10.1038/nn.3059
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Xin WJ, Weng HR, Dougherty PM (2009) Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation. Mol Pain 5:15. https://doi.org/10.1186/1744-8069-5-15
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Yoon HJ, Lim YJ, Zuo Z, Hur W, Do SH (2014) Nicotine decreases the activity of glutamate transporter type 3. Toxicol Lett 225(1):147–152. https://doi.org/10.1016/j.toxlet.2013.12.002
CAS
CrossRef
PubMed
Google Scholar
Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95(26):15769–15774
CrossRef
PubMed
PubMed Central
Google Scholar
Zhang Q, Lu Y, Bian H, Guo L, Zhu H (2017) Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res 9(3):971–985
PubMed Central
PubMed
Google Scholar
Zoli M, Pistillo F, Gotti C (2015) Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 96(Pt B):302–311. https://doi.org/10.1016/j.neuropharm.2014.11.003
CAS
CrossRef
PubMed
Google Scholar