Akaike A, Tamura Y, Yokota T et al (1994) Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 644:181–187
CAS
CrossRef
PubMed
Google Scholar
Akita T, Okada Y (2011) Regulation of bradykinin-induced activation of volume-sensitive outwardly rectifying anion channels by Ca2+ nanodomains in mouse astrocytes. J Physiol 589:3909–3927
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744
CAS
CrossRef
PubMed
Google Scholar
Bartus RT, Dean RL 3rd, Beer B et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414
CAS
CrossRef
PubMed
Google Scholar
Bergamaschini L, Parnetti L, Pareyson D et al (1998) Activation of the contact system in cerebrospinal fluid of patients with Alzheimer disease. Alzheimer Dis Assoc Disord 12:102–108
CAS
CrossRef
PubMed
Google Scholar
Bicca MA, Costa R, Loch-Neckel G et al (2015) B2 receptor blockage prevents Aβ-induced cognitive impairment by neuroinflammation inhibition. Behav Brain Res 278:482–491
CAS
CrossRef
PubMed
Google Scholar
Bresnick GH (1989) Excitotoxins: a possible new mechanism for the pathogenesis of ischemic retinal damage. Arch Ophthalmol 107:339–341
CAS
CrossRef
PubMed
Google Scholar
Choi DW, Maulucci-Gedde M, Kriegstein AJ (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357–368
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Coyle JT, Price DL, DeLong MR et al (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190
CAS
CrossRef
PubMed
Google Scholar
Giaume C, Koulakoff A, Roux L et al (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99
CAS
CrossRef
PubMed
Google Scholar
Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372
CAS
CrossRef
PubMed
Google Scholar
Hsieh HL, Wang HH, Wu CY et al (2007) BK-induced COX-2 expression via PKC-δ-dependent activation of p42/p44 MAPK and NF-κB in astrocytes. Cell Signal 19:330–340
CAS
CrossRef
PubMed
Google Scholar
Iores-Marçal LM, Viel TA, Buck HS et al (2006) Bradykinin release and inactivation in brain of rats submitted to an experimental model of Alzheimer’s disease. Peptides 27:3363–3369
CrossRef
PubMed
Google Scholar
Kaneko S, Maeda T, Kume T et al (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via α7 neuronal receptors and neuronal CNS receptors. Brain Res 765:135–140
CAS
CrossRef
PubMed
Google Scholar
Khan MT, Wagner L 2nd, Yule DI et al (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737
CAS
CrossRef
PubMed
Google Scholar
Kihara T, Shimohama S, Sawada H et al (2001) α7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A β-amyloid-induced neurotoxicity. J Biol Chem 276:13541–13546
CAS
CrossRef
PubMed
Google Scholar
Kim HG, Moon M, Choi JG et al (2014) Donepezil inhibits the amyloid-β oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology 40:23–32
CAS
CrossRef
PubMed
Google Scholar
Kume T, Sugimoto M, Takada Y et al (2005) Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholinesterase inhibitors in rat cortical neurons. Eur J Pharmacol 527:77–85
CAS
CrossRef
PubMed
Google Scholar
Lacoste B, Tong XK, Lahjouji K et al (2013) Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation 4:10–57
Google Scholar
Lee SC, Dickson DW, Brosnan CF (1995) Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav Immun 9:345–354
CAS
CrossRef
PubMed
Google Scholar
Lee YJ, Han SB, Nam SY, Oh KW et al (2010) Inflammation and Alzheimer’s disease. Arch Pharm Res 33:1539–1556
CAS
CrossRef
PubMed
Google Scholar
Lin CC, Hsieh HL, Shih RH et al (2012) NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 10:35
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Liu HT, Akita T, Shimizu T et al (2009) Bradykinin-induced astrocyte-neuron signaling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J Physiol 587:2197–2209
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Marrero MB, Bencherif M (2009) Convergence of α7 nicotinic acetylcholine receptor-activated pathways for anti-apoptosis and anti-inflammation: central role for JAK2 activation of STAT3 and NF-κB. Brain Res 1256:1–7
CAS
CrossRef
PubMed
Google Scholar
Morris GP, Clark IA, Zinn R et al (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53
CAS
CrossRef
PubMed
Google Scholar
Oikawa H, Nakamichi N, Kambe Y et al (2005) An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. J Neurosci Res 79:535–544
CAS
CrossRef
PubMed
Google Scholar
Park J, Choi K, Jeong E et al (2004) Reactive oxygen species mediate chloroquine-induced expression of chemokines by human astroglial cells. Glia 47:9–20
CrossRef
PubMed
Google Scholar
Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111
CAS
CrossRef
PubMed
Google Scholar
Perry EK, Morris CM, Court JA et al (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64:385–395
CAS
CrossRef
PubMed
Google Scholar
Prediger RD, Medeiros R, Pandolfo P et al (2008) Genetic deletion or antagonism of kinin B(1) and B(2) receptors improves cognitive deficits in a mouse model of Alzheimer’s disease. Neuroscience 151:631–643
CAS
CrossRef
PubMed
Google Scholar
Razani-Boroujerdi S, Boyd RT, Dávila-García MI et al (2007) T cells express α7-nicotinic acetylcholine receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response. J Immunol 179:2889–2998
CAS
CrossRef
PubMed
Google Scholar
Rogers J (2008) The inflammatory response in Alzheimer’s disease. J Periodontol 79:1535–1543
CAS
CrossRef
PubMed
Google Scholar
Schwaninger M, Sallmann S, Petersen N et al (1999) Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor- κB. J Neurochem 73:1461–1466
CAS
CrossRef
PubMed
Google Scholar
Shaw S, Bencherif M, Marrero MB et al (2002) Janus kinase 2, an early target of α7 nicotinic acetylcholine receptor-mediated neuroprotection against Aβ-(1-42) amyloid. J Biol Chem 277:44920–44924
CAS
CrossRef
PubMed
Google Scholar
Shimohama S, Greenwald DL, Shafron DH et al (1998) Nicotinic α7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. Brain Res 779:359–363
CAS
CrossRef
PubMed
Google Scholar
Szado T, Vanderheyden V, Parys JB et al (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci U S A 105:2427–2432
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Takada Y, Yonezawa A, Kume T et al (2003) Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 306:772–777
CAS
CrossRef
PubMed
Google Scholar
Takada-Takatori Y, Kume T, Sugimoto M et al (2006) Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology 51:474–486
CAS
CrossRef
PubMed
Google Scholar
Takada-Takatori Y, Kume T, Ohgi Y et al (2008a) Mechanisms of α7-nicotinic receptor up-regulation and sensitization to donepezil-induced by chronic donepezil treatment. Eur J Pharmacol 590:150–156
CAS
CrossRef
PubMed
Google Scholar
Takada-Takatori Y, Kume T, Ohgi Y et al (2008b) Mechanism of neuroprotection by donepezil pretreatment in rat cortical neurons chronically treated with donepezil. J Neurosci Res. 2008 86:3575–3583
CAS
CrossRef
PubMed
Google Scholar
Takada-Takatori Y, Kume T, Izumi Y (2009) Roles of nicotinic receptors in acetylcholinesterase inhibitor-induced neuroprotection and nicotinic receptor up-regulation. Biol Pharm Bull 32:318–324
CAS
CrossRef
PubMed
Google Scholar
Whitehouse PJ, Price DL, Struble RG et al (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239
CAS
CrossRef
PubMed
Google Scholar
Yan J, Fu Q, Cheng L et al (2014) Inflammatory response in Parkinson’s disease (review). Mol Med Rep 10:2223–2233
CAS
CrossRef
PubMed
Google Scholar
Yang CM, Lin CC, Lee IT et al (2012) Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K-Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflammation 18:9–12
CAS
Google Scholar