Skip to main content

Analysis of On Chip Optical Source Vertical Cavity Surface Emitting Laser (VCSEL)

  • Conference paper
  • First Online:
Silicon Photonics & High Performance Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 718))

Abstract

The major developments in semiconductor laser technology, i.e., Vertical Cavity Surface Emitting Lasers (VCSELs), really revolutionized the field of semiconductor lasers and play a pivotal role in every walk of life such as science and technology, research and development, consumer and industrial environment, medical, military, surveillance, telecommunication, and a host of other applications. Although the development of lasers is pertinent to each other because of dependence on Distributed Bragg Reflector (DBR) mirrors, the devices under reference are normally supposed to be the most appropriate semiconductor lasers for their evident plentiful significances and applications. In modern age, the importance of VCSELs is reflected in fact that they have become the second largest production among all types of semiconductor lasers due to intrinsic structure features of array formation, coherent emission with small beam divergence, large output power, low-threshold operations, high modulation bandwidths, etc., tuned by electrical and temperature variations. In the present investigation, the electrical and optical characteristics of the state-of-the-art long-wavelength VCSEL at 1310 nm emission is analyzed with different apertures such as 20 and 12 µm. The authors observed that if the oxide aperture of the same device is reduced 20 to 12 µm, it obtained the incremental in the carrier and photon density rates and subsequently reduces the emitted power, threshold current, and gain of the devices. The present communication discusses the history, present status, and an exposure of some state-of-the-art performances with optimized results of VCSELs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent light emission from GaAs junctions. Phys Rev Lett 9:366–369

    Article  Google Scholar 

  2. Iga K (2000) Surface emitting laser-its birth and generation of new optoelectronics field. IEEE J Sel Top Quantum Electron 6(6):1201–1215

    Article  Google Scholar 

  3. Soda H, Iga K, Kitahara C, Suematsu Y (1979) GaInAsP/InP surface emitting injection lasers. Jap J Appl Phys 18:2329–2330

    Article  Google Scholar 

  4. Chow WW, Choquette KD, Crawford MH, Lear KL, Hadley GR (1997) Design, fabrication and performance of infrared and visible vertical-cavity surface emitting lasers. IEEE J Quantum Electron 33(10):1810–1823

    Article  Google Scholar 

  5. Koyama F, Kinoshita S, Iga K (1989) Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser. Appl Phys Lett 55:221–222

    Article  Google Scholar 

  6. Jewell J, Harbison J, Scherer A, Lee Y, Florez L (1991) Vertical-Cavity surface emitting lasers: Design, growth, fabrication, characterization. IEEE J Quantum Electron 27(6):1332–1346

    Article  Google Scholar 

  7. Babic DI, Streubel K, Mirin RP, Margalit NM, Bowers JE, Hu EL (1995) Room temperature continuous wave operation of 1.54 μm vertical cavity lasers. IEEE Photonics Technol Lett 7(11):1225–1227

    Article  Google Scholar 

  8. Piprek J, Babic DI, Bowers JE (1996) Numerical analysis of 1.54 um double-fused vertical-cavity lasers operating continuous-wave up to 33 oC. Appl Phys Lett 68(19):2630–2632

    Article  Google Scholar 

  9. Jayaraman V, Geske JC, McDougal MH, Peters FH, Lowes TD, Char TD (1998) Uniform threshold, continuous wave, single mode 1300 nm vertical cavity lasers from 0 to 70 °C. Electron Lett 34(14):1405–1407

    Article  Google Scholar 

  10. Qian Y et al (1997) Long wavelength (1.3 μm) vertical cavity surface emitting lasers with a wafer bonded mirror and an oxygen implanted confinement region. Appl Phys Lett 71(1):25–27

    Article  Google Scholar 

  11. Lee Y, Jewell J, Scherer A, McCall S, Harbison J, Fiorez L (1989) Room-temperature continuous-wave vertical cavity single-quantum-well microlaser diodes. Electron Lett 25(20):1377–1378

    Article  Google Scholar 

  12. Baba T, Yogo Y, Suzuki K, Koyama F, Iga K (1993) Near room temperature continuous wave lasing characteristics of GaInAsP/InP Surface Emitting Laser. Electron Lett 29(10):913–915

    Article  Google Scholar 

  13. Grabherr M, Weigl B, Riener G, Ebeling K (1996) Comparison of proton implanted and selectively oxidized vetical-cavity surface-emitting lasers. In: Conference on lasers and electron-optics, CLEO/Europe, pp 165

    Google Scholar 

  14. Hayashi Y, Mukaihara T, Hatori N, Ohnoki N, Matsutani A, Koyama F, Iga K (1995) Record low-threshold index guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure. Electron Lett 31:560–562

    Article  Google Scholar 

  15. Lear KL, Choquette KD, Schneider RP Jr, Kilcoyne SP, Geib KM (1995) Selectively oxidized vertical cavity surface emitting laser with 50% power conversion efficiency. Electron Lett 31:208–209

    Article  Google Scholar 

  16. vander Ziel JP, Ilegems M (1975) Multilayer GaAs-Al0.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl Optics 14:2627–2630

    Article  Google Scholar 

  17. Geels RS et al (1991) InGaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 27(6):1359–1367

    Article  Google Scholar 

  18. Huffaker DL, Deppe DG, Kumar K, Rogers TJ (1994) Native oxide defined ring contact for low threshold vertical cavity lasers. Appl Phys Lett 65:97–99

    Article  Google Scholar 

  19. Choquette KD, Schneider RP, Lear KL, Geib KM (1994) Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron Lett 30(24):2043–2044

    Article  Google Scholar 

  20. Lear KL, Mar A, Choquette KD, Kilcoyne SP, Schneider RP, Geib KM (1996) High frequency modulation of oxide confined vertical cavity surface emitting lasers. Electron Lett 32:457–458

    Article  Google Scholar 

  21. Koyama F (2006) Recent advances of VCSEL photonics. J Light wave Technol 24:4502–4513

    Article  Google Scholar 

  22. Willner AE et al (2012) Optics and photonics: key enabling technologies. Proceeding IEEE 100:1604–1643

    Article  Google Scholar 

  23. Zervas MN, et al (2014) High power fiber lasers: a review. IEEE J Sel Top Quantum Electron 20(5)

    Google Scholar 

  24. Richardson DJ et al (2010) High power fiber lasers: current status and future prospective. J Opt Soc Amer B 27:B63–B92

    Article  Google Scholar 

  25. Michalzik R, Ebeling KJ (2003) Operating principles of VCSELs. Univ of Ulm, Optoelectronics Department

    Google Scholar 

  26. Tell B, Lee YH, Brown Goebeler KF, Jewell JL, Leigenguth RE, Asom MT, Livescu G, Luther L, Mattera VD (1990) High-power CW vertical-cavity top surface-emitting GaAs quantum well lasers. Appl Phys Lett 57(18):1855–1857

    Article  Google Scholar 

  27. Kasten AM, Tan MP, Sulkin JD, Leisher PO, Choquette KD (2008) Photonic crystal vertical cavity lasers with wavelength-independent single-mode behavior. IEEE Photon Technol Lett 20(23):2010–2012

    Article  Google Scholar 

  28. Ragunathan G (2014) Design and fabrication of vertical external cavity surface-emitting lasers. Thesis for the degree of Master of Science in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

    Google Scholar 

  29. Larsson A, Gustavsson JS (2013) VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springer-Verlag, Berlin, Germany ch. 4, pp 119–144

    Google Scholar 

  30. Saha AK, Islam S (2009) An improved model for computing the reflectivity of a AlAs/GaAs based distributed bragg reflector and vertical cavity surface emitting laser. Optical Quantum Electron 41:873–882

    Article  Google Scholar 

  31. Leonardis FD et al (2007) Improved simulation of VCSEL distributed bragg reflectors. J Comput Electron 6:289–292

    Article  Google Scholar 

  32. Mitani SM, Choudhury PK, Alias MS (2007) Design and analysis of a GaAs-based 850 nm vertical cavity surface emitting laser with different doping in the reflection regions. J Russian Laser Res 28(6):610–618

    Article  Google Scholar 

  33. Gronenborn S et al (2011) High-power VCSELs with a rectangular aperture. Appl Phys B Laser Opt-Springer 105:783–792

    Article  Google Scholar 

  34. Seurin JF et al (2013) High power red VCSEL arrays. Proceeding of SPIE 8639:86390O-1–86390O-9

    Article  Google Scholar 

  35. Alias MS et al (2009) Comprehensive uniformity analysis of GaAs-based VCSEL epiwafer by utilizing the on-wafer test capability. J Russ laser Res 30(4):368–375

    Article  Google Scholar 

  36. Huffaker DL, Graham LA, Deppe DG (1996) Fabrication of high packaging density vertical cavity surface emitting laser arrays using selective oxidation. IEEE Photon Techn Lett 8:596–598

    Article  Google Scholar 

  37. Sinzinger S, Jahns J (2003) Microoptics, 2nd edn. WILEY-VCH GmbH & Co., Weinheim

    Book  Google Scholar 

  38. Baili G et al (2014) Ultralow noise and high-power VCSEL for high dynamic range and broadband RF/Optical links. J Light wave Technol 32(20):3489–3494

    Article  Google Scholar 

  39. Iga K (2008) Vertical Cavity Surface Emitting Laser: its conceptions and evolution. Jpn J Appl Phys 47:1–10

    Article  Google Scholar 

  40. Tayahi MB, Dutta NK, Hobson WS, Vakhshoori D, Lopata J, Wynn J (1997) High power InGaAs/GaAsP/lnGaP surface emitting laser. Electron Lett 33(21):1794–1795

    Article  Google Scholar 

  41. Chang C-H, Chrostowski L, Chang-Hasnain CJ (2003) Injection locking of VCSELs. IEEE J Sel Top Quantum Electron 9(5):1386–1393

    Article  Google Scholar 

  42. Margalit NM, Zhang SZ, Bowers JE (1997) Vertical cavity lasers for telecom applications. IEEE Communications Magazine, Newyork, pp 164–170

    Google Scholar 

  43. Liu JJ, Kalayjian Z, Riely B, Chang W, Simonis GJ (2003) Alyssa Apsel and Andreas Andreou, multichannel ultrathin silicon-on-sapphire optical interconnects. IEEE J. Sel Top Quantum Electron 9(2):380–386

    Article  Google Scholar 

  44. Yu SF (2003) Analysis and design of vertical cavity surface emitting laser. Wiley

    Google Scholar 

  45. Lamy JM, Boyer Richard S, Levallois C, Paranthoen C, Folliot H, Chevalier N, Le Corre A, Loualiche S (2008) Design of an InGaAs/InP 1.55 um electrically pumped VCSEL. Opt Quant Electron 40:1193–1198

    Article  Google Scholar 

  46. Grabherr M, Gerlach P, King R, Jager R (2009) Integrated photodiodes complement the VCSEL platform. Proc of SPIE 7229, pp 72290E 1–9

    Google Scholar 

  47. Larsson A (2011) Advances in VCSELs for communication and sensing. IEEE J Sel Top Quantum Electron 17:1552–1567

    Article  Google Scholar 

  48. Birkbeck AL et al (2003) VCSEL arrays as Micromanipulators in chip-based Biosystems. Biomed Microdevices 5(1):47–54

    Article  Google Scholar 

  49. Johnson K, Brenner MH, Hogan W, Dummer M (2012) Advances in red VCSEL technology. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 569379

    Google Scholar 

  50. Challener WA et al (2009) Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photon 3:220–224

    Article  Google Scholar 

  51. Ukaegbu IA et al (2013) Performance analysis of vertical and horizontal transmitter array modules using short and long wavelength VCSELs for optical interconnects. IEEE Trans Components, Packaging and Manufacturing Technol 3(5):740–748

    Article  Google Scholar 

  52. Seeds AJ, Williams KJ (2006) Microwave photonics. J Lightwave Technol 24(12):4628–4641

    Article  Google Scholar 

  53. Chevallier C, Fressengeas N, Genty F, Jacquet J (2012) Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared VCSEL application. Optical Quantum Electron 44:169–174

    Article  Google Scholar 

  54. Haurylau M et al (2007) On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Sel Top Quantum Electron 12(6):1699–1705

    Article  Google Scholar 

  55. Menon PS, Kandiah K, Majlis BY, Shaari S (2011) Comparison of Mesa and Device Diameter Variation in Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface Emitting Lasers. Sains Malaysiana 40(6):631–636

    Google Scholar 

  56. Ivanov PS, Rorison JM (2010) Theoretical investigation of static and dynamic characteristics of vertical cavity surface emitting lasers with incorporated two-dimensional photonic crystals. Opt Quantum Electron 42:193–213

    Article  Google Scholar 

  57. Rashed Ahmed Nabih Zaki, Metawe Mohamed A (2013) Operation performance characteristics of vertical cavity surface emitting lasers (VCSELs) under high thermal neutron irradiated fields. J Rus Laser Res 34(1):1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Dahiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahiya, S., Kumar, S., Kaushik, B.K. (2018). Analysis of On Chip Optical Source Vertical Cavity Surface Emitting Laser (VCSEL). In: Mishra, A., Basu, A., Tyagi, V. (eds) Silicon Photonics & High Performance Computing. Advances in Intelligent Systems and Computing, vol 718. Springer, Singapore. https://doi.org/10.1007/978-981-10-7656-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7656-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7655-8

  • Online ISBN: 978-981-10-7656-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics