Skip to main content

Regulatory Roles of MicroRNAs in Addictions and Other Psychiatric Diseases

  • Chapter
  • First Online:
Tobacco Smoking Addiction: Epidemiology, Genetics, Mechanisms, and Treatment

Abstract

A central question in addiction is how drug-induced changes in synaptic signaling are converted into long-term neuroadaptations. Emerging evidence reveals that microRNAs (miRNAs) play a distinct role in this process through rapid response to cellular signals and dynamic regulation of local mRNA transcripts. Because each miRNA can target hundreds of mRNAs, relative changes in the expression of miRNAs can significantly affect cellular responsiveness, synaptic plasticity, and transcriptional events. These diverse consequences of miRNA action occur through coordination with genes implicated in addictions, the most compelling of these being the neurotrophin BDNF, the transcription factor cAMP response element-binding protein (CREB), and the DNA-binding methyl CpG-binding protein 2 (MeCP2). In this chapter, we summarize the recent progress in the understanding of miRNAs in general mechanisms of plasticity and neuroadaptation and then focus on specific examples of miRNA regulation in the context of addiction. We conclude that miRNA-mediated gene regulation is a conserved means of converting environmental signals into neuronal response, which holds significant implications for addiction and other psychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DA, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Sestan N, State MW (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310:317–320

    Article  CAS  PubMed  Google Scholar 

  • Acheson A, Conover JC, Fandl JP, Dechiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A Bdnf autocrine loop in adult sensory neurons prevents cell death. Nature 374:450–453

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng HYM (2011) miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Human. Molecular Genetics 20:731–751. https://doi.org/10.1093/Hmg/Ddq519

    Article  CAS  Google Scholar 

  • Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells (vol 99, pg 6358, 2002). Proceedings of the National Academy of Sciences of the United States of America 99: 9082–9082.

    Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in drosophila. Cell 124:191–205

    Article  CAS  PubMed  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi :S0092867404000455 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405:590–593

    Article  CAS  PubMed  Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    Article  CAS  PubMed  Google Scholar 

  • Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240

    Article  CAS  PubMed  Google Scholar 

  • Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    Article  CAS  PubMed  Google Scholar 

  • Bicker S, Schratt G (2008) microRNAs: tiny regulators of synapse function in development and disease. J Cell Mol Med 12:1466–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissonneault V, Plante I, Rivest S, Provost P (2009) MicroRNA-298 and MicroRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 284:1971–1981

    Article  CAS  PubMed  Google Scholar 

  • Brunzell DH, Mineur YS, Neve RL, Picciotto MR (2009) Nucleus accumbens CREB activity is necessary for nicotine conditioned place preference. Neuropsychopharmacology 34:1993–2001. https://doi.org/10.1038/npp.2009.11. npp200911 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107:22687–22692. https://doi.org/10.1073/pnas.1012851108. 1012851108 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlezon WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, Duman RS, Neve RL, Nestler EJ (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    Article  CAS  PubMed  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229. https://doi.org/10.1126/science.1153252. 320/5880/1224 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42:350–362

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekar V, Dreyer JL (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology. https://doi.org/10.1038/npp.2010.250. npp2010250 [pii]

  • Chang LF, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Khare G, Dani V, Nelson S, Jaenisch R (2006) The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49:341–348. https://doi.org/10.1016/j.neuron.2005.12.027. S0896-6273(06)00010-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  • Choi KH, Whisler K, Graham DL, Self DW (2006) Antisense-induced reduction in nucleus accumbens cyclic AMP response element binding protein attenuates cocaine reinforcement. Neuroscience 137:373–383. https://doi.org/10.1016/j.neuroscience.2005.10.049

    Article  CAS  PubMed  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Nat Acad Sci U S A 103:2422–2427

    Article  CAS  Google Scholar 

  • Dolganiuc A, Petrasek J, Kodys K, Catalano D, Mandrekar P, Velayudham A, Szabo G (2009) MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol-Clin Exp Res 33:1704–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ, Malenka RC (2006) CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci 9:475–477. https://doi.org/10.1038/Nn1661

    Article  CAS  PubMed  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Ohashi K, Sasaki Y, Goshima Y, Niwa R, Uemura T, Mizuno K (2003) Control of growth cone motility and morphology by LIM kinase and slingshot via phosphorylation and dephosphorylation of cofilin. J Neurosci 23:2527–2537

    CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumoto H, Cheung B, Hyman B, Irizarry M (2002) Beta-site amyloid precursor protein cleaving enzyme (BACE) activity is increased in temporal neocortex of Alzheimer’s disease. Neurobiol Aging 23:S181–S181

    Google Scholar 

  • Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278:32181–32188. https://doi.org/10.1074/jbc.M305308200M305308200. M305308200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM (2003) It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 26:184–192

    Article  CAS  PubMed  Google Scholar 

  • Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K (2010) Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5:e15497. https://doi.org/10.1371/journal.pone.0015497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Nat Acad Sci U S A 105:6415–6420

    Article  CAS  Google Scholar 

  • Hnasko TS, Sotak BN, Palmiter RD (2005) Morphine reward in dopamine-deficient mice. Nature 438:854–857

    Article  CAS  PubMed  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science, 319:1785–1786

    Google Scholar 

  • Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ (2010) Striatal microRNA controls cocaine intake through CREB signalling. Nature 466:197–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holsinger RMD, McLean CA, Masters CL, Evin G, Beyreuther K (2002) BACE and beta-secretase product CTF beta are increased in sporadic Alzheimer’s disease brain. Neurobiol Aging 23:S177–S177

    Google Scholar 

  • Horger BA, Iyasere CA, Berhow MT, Messer CJ, Nestler EJ, Taylor JR (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19:4110–4122

    CAS  PubMed  Google Scholar 

  • Huang WH, Li MD (2009a) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol Psychiatry 65:702–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WH, Li MD (2009b) Nicotine modulates expression of miR-140*, which targets the 3′-untranslated region of dynamin 1 gene (Dnm1). Int J Neuropsychopharmacol 12:537–546

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Ma JZ, Payne TJ, Beuten J, Dupont RT, Li MD (2008) Significant association of DRD1 with nicotine dependence. Hum Genet 123:133–140

    Article  CAS  PubMed  Google Scholar 

  • Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  CAS  PubMed  Google Scholar 

  • Im HI, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191. https://doi.org/10.1038/561

    Article  CAS  PubMed  Google Scholar 

  • Kabbani N, Woll MP, Levenson R, Lindstrom JM, Changeux JP (2007) Intracellular complexes of the beta2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc Natl Acad Sci U S A 104:20570–20575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650

    Article  CAS  PubMed  Google Scholar 

  • Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475

    Article  CAS  PubMed  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 42:159–163

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10:1513–1514. https://doi.org/10.1038/Nn2010

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2005) The neurocircuitry of addiction: implications for treatment. Clin Neurosci Res 5:89–101

    Article  CAS  Google Scholar 

  • Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatr Clin Neurosci 9:482–497

    Article  CAS  Google Scholar 

  • Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DEH, Truong HT, Russo SJ, LaPlant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314. https://doi.org/10.1016/j.neuron.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  • Larimore JL, Chapleau CA, Kudo S, Theibert A, Percy AK, Pozzo-Miller L (2009) Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol Dis 34:199–211. https://doi.org/10.1016/j.nbd.2008.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Foll B, Diaz J, Sokoloff P (2005) A single cocaine exposure increases BDNF and D-3 receptor expression: implications for drug-conditioning. NeuroReport 16:175–178

    Article  PubMed  Google Scholar 

  • Liu J, Yang AR, Kelly T, Puche A, Esoga C, June HL Jr, Elnabawi A, Merchenthaler I, Sieghart W, June HL Sr, Aurelian L (2011) Binge alcohol drinking is associated with GABAA {alpha}2-regulated toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci U S A 108:4465–4470. https://doi.org/10.1073/pnas.1019020108. 1019020108 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T (2010) Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry 67:657–665. https://doi.org/10.1016/j.biopsych.2009.12.022

    Article  PubMed  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18:297–300

    Article  CAS  PubMed  Google Scholar 

  • Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–663. https://doi.org/10.1016/j.neuron.2011.01.017. S0896-6273(11)00065-1 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maes OC, Chertkow HM, Wang E, Schipper HM (2009) MicroRNA: implications for Alzheimer disease and other human CNS disorders. Curr Genomics 10:154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin MT, Berkow A, Golden SA, Koya E, Planeta CS, Hope BT (2009) Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in the rat nucleus accumbens. Eur J Neurosci 30:1931–1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin KC, Zukin RS (2006) RNA trafficking and local protein synthesis in dendrites: an overview. J Neurosci 26: 7131–7134.

    Google Scholar 

  • Martin G, Puig SI, Pietrzykowski A, Zadek P, Emery P, Treistman S (2004) Restricted cellular localization of a specific BK-channel subtype controls ethanol sensitivity in the nucleus accumbens. Alcohol-Clin Exp Res 28:61A–61A

    Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan GP, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science 302:890–893

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and Delta FosB. Nat Neurosci 6:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3030–3042. https://doi.org/10.1093/Hmg/Ddn201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moron JA, Gullapalli S, Taylor C, Gupta A, Gomes I, Devi LA (2010) Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology 35:955–966

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  CAS  PubMed  Google Scholar 

  • Paroo Z, Ye XC, Chen S, Liu QH (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139:112–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DO, Jeffries C, Sullivan P (2005) Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 10:69–78

    Article  CAS  PubMed  Google Scholar 

  • Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin JP, Hammond SM (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8:R27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietrzykowski AZ (2010) The role of microRNAs in drug addiction: a big lesson from tiny molecules. Int Rev Neurobiol 91:1001–1005

    Google Scholar 

  • Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287. https://doi.org/10.1016/j.neuron.2008.05.032. S0896-6273(08)00529-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63:803–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, Martin KJ, Barton GJ, Hutvagner G, Arthur JSC (2010) Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 428:281–291

    Article  CAS  PubMed  Google Scholar 

  • Renthal W, Kumar A, Xiao GH, Wilkinson M, Covington HE, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ (2009) Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62:335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33:267–276. https://doi.org/10.1016/j.tins.2010.02.002. S0166-2236(10)00020-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, Tabakoff B (2010) A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2010.12.019. S0028–3908(10)00354–0 [pii]

  • Sadri-Vakili G, Kumaresan V, Schmidt HD, Famous KR, Chawla P, Vassoler FM, Overland RP, Xia E, Bass CE, Terwilliger EF, Pierce RC, Cha JHJ (2010) Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J Neurosci 30:11735–11744. https://doi.org/10.1523/Jneurosci.2328-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santarelli DM, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69:180–187. https://doi.org/10.1016/j.biopsych.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Stalnaker TA, Shaham Y (2007) A role for BDNF in cocaine reward and relapse. Nat Neurosci 10:935–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 18:1848–1859

    CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  PubMed Central  Google Scholar 

  • Sethi P, Lukiw WJ (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459:100–104

    Article  CAS  PubMed  Google Scholar 

  • Shipston MJ (2001) Alternative splicing of potassium channels: a dynamic switch of cellular excitability. Trends Cell Biol 11:353–358

    Article  CAS  PubMed  Google Scholar 

  • Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJL, Kane C, Hubel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg ME, Draguhn A, Rehmsmeier M, Martinez J, Schratt GM (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–U36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. NeuroMol Med 11:133–140

    Article  CAS  Google Scholar 

  • Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M, Liu CG, Croce C, Calin GA, Esteller M (2010) Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 5:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Nat Acad Sci U S A 102:16426–16431

    Article  CAS  Google Scholar 

  • Volkow ND (2009) Substance use disorders in schizophrenia – clinical implications of comorbidity. Schizophr Bull 35:469–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Wang GJ, Begleiter H, Porjesz B, Fowler JS, Telang F, Wong C, Ma YM, Logan J, Goldstein R, Alexoff D, Thanos PK (2006) High levels of dopamine D-2 receptors in unaffected members of alcoholic families – possible protective factors. Arch Gen Psychiatry 63:999–1008

    Article  CAS  PubMed  Google Scholar 

  • Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–746

    Article  CAS  PubMed  Google Scholar 

  • Williams JM, Gandhi KK, Lu SE, Kumar S, Shen JW, Foulds J, Kipen H, Benowitz NL (2010) Higher nicotine levels in schizophrenia compared with controls after smoking a single cigarette. Nicotine Tob Res 12:855–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Xie XH (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7:R85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Tao JF, Chen PJ, Shahab A, Ge WH, Hart RP, Ruan XA, Ruan YJ, Sun YE (2010) Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 107:18161–18166. https://doi.org/10.1073/pnas.1005595107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing B, Kong H, Meng X, Wei SG, Xu M, Li SB (2010) Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 169:1511–1519. https://doi.org/10.1016/j.neuroscience.2010.06.034. S0306-4522(10)00881-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Huang WH, Payne TJ, Ma JZ, Li MD (2009) Detection of genetic association and a functional polymorphism of dynamin 1 gene with nicotine dependence in European and African Americans. Neuropsychopharmacology 34:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZL, Hong EJ, Cohen S, Zhao WN, Ho HYH, Schmidt L, Chen WG, Lin YX, Savner E, Griffith EC, Hu L, Steen JAJ, Weitz CJ, Greenberg ME (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52:255–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi P, Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12:1438–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YL, Kalbfleisch T, Brennan MD, Li Y (2009) A microRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophr Res 109:86–89

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, M.D. (2018). Regulatory Roles of MicroRNAs in Addictions and Other Psychiatric Diseases. In: Tobacco Smoking Addiction: Epidemiology, Genetics, Mechanisms, and Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-10-7530-8_14

Download citation

Publish with us

Policies and ethics