Skip to main content

Pharmacogenomics and Pharmacoepigenomics: Impact on Therapeutic Strategies

  • Chapter
  • First Online:
Genomics-Driven Healthcare

Abstract

Recent studies suggest that adverse drug reactions (ADRs) are a major cause of death and disability. Furthermore, when medications cause no harm, they may be ineffective leading to undesirable consequences [1]. Pharmacogenomics and personalized medicine have the potential to minimize ADRs and improve healthcare quality by tailoring pharmacotherapy to individual patients. Although pharmacogenomic testing is considered a burden on therapeutic cost, one-time pharmacogenomic testing for asymptomatic patients was shown to be cost-effective to minimize lifetime ADRs for a given age group [2]. This should stimulate and encourage preemptive genotyping especially with the recent advances and cost reduction in genomic sequencing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205

    Article  CAS  PubMed  Google Scholar 

  2. Alagoz O, Durham D, Kasirajan K (2016) Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions. Pharmacogenomics J 16:129–136

    Article  CAS  PubMed  Google Scholar 

  3. Chhibber A, French CE, Yee SW, Gamazon ER, Theusch E, Qin X, Webb A, Papp AC, Wang A, Simmons CQ, Konkashbaev A, Chaudhry AS, Mitchel K, Stryke D, Ferrin TE, Weiss ST, Kroetz DL, Sadee W, Nickerson DA, Krauss RM, George AL, Schuetz EG, Medina MW, Cox NJ, Scherer SE, Giacomini KM, Brenner SE (2016) Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines. Pharmacogenomics J 17:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohamed S, Syed BA (2013) Commercial prospects for genomic sequencing technologies. Nat Rev Drug Discov 12:341–342

    Article  CAS  PubMed  Google Scholar 

  6. Shendure J, Lieberman Aiden E (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Persson A, Sim SC, Virding S, Onishchenko N, Schulte G, Ingelman-Sundberg M (2014) Decreased hippocampal volume and increased anxiety in a transgenic mouse model expressing the human CYP2C19 gene. Mol Psychiatry 19:733–741

    Article  CAS  PubMed  Google Scholar 

  8. Sim SC, Nordin L, Andersson TM, Virding S, Olsson M, Pedersen NL, Ingelman-Sundberg M (2010) Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 153B:1160–1166

    PubMed  CAS  Google Scholar 

  9. Frankish A, Uszczynska B, Ritchie GR, Gonzalez JM, Pervouchine D, Petryszak R, Mudge JM, Fonseca N, Brazma A, Guigo R, Harrow J (2015) Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction. BMC Genomics 16(Suppl 8):S2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  CAS  PubMed  Google Scholar 

  11. Cronin-Fenton DP, Damkier P, Lash TL (2014) Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol 10:107–122

    Article  CAS  PubMed  Google Scholar 

  12. Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV, Desta Z, Flockhart DA, Skaar TC (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85:151–159

    Article  CAS  PubMed  Google Scholar 

  13. Brauch H, Murdter TE, Eichelbaum M, Schwab M (2009) Pharmacogenomics of tamoxifen therapy. Clin Chem 55:1770–1782

    Article  CAS  PubMed  Google Scholar 

  14. Saladores P, Murdter T, Eccles D, Chowbay B, Zgheib NK, Winter S, Ganchev B, Eccles B, Gerty S, Tfayli A, Lim JS, Yap YS, Ng RC, Wong NS, Dent R, Habbal MZ, Schaeffeler E, Eichelbaum M, Schroth W, Schwab M, Brauch H (2015) Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J 15:84–94

    Article  CAS  PubMed  Google Scholar 

  15. Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55:471–478

    Article  CAS  PubMed  Google Scholar 

  16. Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, Nikoloff DM, Hillman G, Fontecha MR, Lawrence HJ, Parker BA, Wu AH, Pierce JP (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89:718–725

    Article  CAS  PubMed  Google Scholar 

  17. van Schaik RH, Kok M, Sweep FC, van Vliet M, van Fessem M, Meijer-van Gelder ME, Seynaeve C, Lindemans J, Wesseling J, Van’t Veer LJ, Span PN, van Laarhoven H, Sleijfer S, Foekens JA, Linn SC, Berns EM (2011) The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 12:1137–1146

    Article  CAS  PubMed  Google Scholar 

  18. Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S (2007) CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics 17:93–101

    PubMed  CAS  Google Scholar 

  19. Zafra-Ceres M, de Haro T, Farez-Vidal E, Blancas I, Bandres F, de Duenas EM, Ochoa-Aranda E, Gomez-Capilla JA, Gomez-Llorente C (2013) Influence of CYP2D6 polymorphisms on serum levels of tamoxifen metabolites in Spanish women with breast cancer. Int J Med Sci 10(7):932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Souza JA, Olopade OI (2011) CYP2D6 genotyping and tamoxifen: an unfinished story in the quest for personalized medicine. Semin Oncol 38:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nowell SA, Ahn J, Rae JM, Scheys JO, Trovato A, Sweeney C, MacLeod SL, Kadlubar FF, Ambrosone CB (2005) Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 91:249–258

    Article  CAS  PubMed  Google Scholar 

  22. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  CAS  PubMed  Google Scholar 

  23. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208

    Article  CAS  PubMed  Google Scholar 

  24. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE, Klein TE (2011) Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tai HL, Fessing MY, Bonten EJ, Yanishevsky Y, d’Azzo A, Krynetski EY, Evans WE (1999) Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C. Pharmacogenetics 9:641–650

    Article  CAS  PubMed  Google Scholar 

  26. Lennard L (2002) TPMT in the treatment of Crohn's disease with azathioprine. Gut 51:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lennard L, Chew TS, Lilleyman JS (2001) Human thiopurine methyltransferase activity varies with red blood cell age. Br J Clin Pharmacol 52:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez-Lama Y, Bermejo F, Lopez-Sanroman A, Garcia-Sanchez V, Esteve M, Cabriada JL, McNicholl AG, Pajares R, Casellas F, Merino O, Carpio D, Vera MI, Munoz C, Calvo M, Benito LM, Bujanda L, Garcia-Fernandez FJ, Ricart E, Ginard D, Velasco M, Carneros JA, Mancenido N, Algaba A, Froilan C, Cara C, Mate J, Abreu L, Gisbert JP (2011) Thiopurine methyl-transferase activity and azathioprine metabolite concentrations do not predict clinical outcome in thiopurine-treated inflammatory bowel disease patients. Aliment Pharmacol Ther 34:544–554

    Article  CAS  PubMed  Google Scholar 

  29. Lennard L, Cartwright CS, Wade R, Richards SM, Vora A (2013) Thiopurine methyltransferase genotype-phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia. Br J Clin Pharmacol 76:125–136

    Article  CAS  PubMed  Google Scholar 

  30. Konidari A, Anagnostopoulos A, Bonnett LJ, Pirmohamed M, El-Matary W (2014) Thiopurine monitoring in children with inflammatory bowel disease: a systematic review. Br J Clin Pharmacol 78:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bracht K, Nicholls AM, Liu Y, Bodmer WF (2010) 5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency. Br J Cancer 103:340–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL (2007) UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 99:1290–1295

    Article  CAS  PubMed  Google Scholar 

  33. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2:43–47

    Article  CAS  PubMed  Google Scholar 

  34. Offer SM, Fossum CC, Wegner NJ, Stuflesser AJ, Butterfield GL, Diasio RB (2014) Comparative functional analysis of DPYD variants of potential clinical relevance to dihydropyrimidine dehydrogenase activity. Cancer Res 74:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Staveren MC, Guchelaar HJ, van Kuilenburg AB, Gelderblom H, Maring JG (2013) Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J 13:389–395

    Article  CAS  PubMed  Google Scholar 

  36. Girard H, Levesque E, Bellemare J, Journault K, Caillier B, Guillemette C (2007) Genetic diversity at the UGT1 locus is amplified by a novel 3′ alternative splicing mechanism leading to nine additional UGT1A proteins that act as regulators of glucuronidation activity. Pharmacogenet Genomics 17:1077–1089

    Article  CAS  PubMed  Google Scholar 

  37. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2194

    PubMed  CAS  Google Scholar 

  38. Hu ZY, Yu Q, Pei Q, Guo C (2010) Dose-dependent association between UGT1A1*28 genotype and irinotecan-induced neutropenia: low doses also increase risk. Clin Cancer Res 16:3832–3842

    Article  CAS  PubMed  Google Scholar 

  39. Hu ZY, Yu Q, Zhao YS (2010) Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: a meta-analysis. Eur J Cancer 46:1856–1865

    Article  CAS  PubMed  Google Scholar 

  40. Bethune G, Bethune D, Ridgway N, Xu Z (2010) Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis 2:48–51

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Peled N, Yoshida K, Wynes MW, Hirsch FR (2009) Predictive and prognostic markers for epidermal growth factor receptor inhibitor therapy in non-small cell lung cancer. Ther Adv Med Oncol 1:137–144

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hirsch FR, Varella-Garcia M, Cappuzzo F (2009) Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene 28(Suppl 1):S32–S37

    Article  CAS  PubMed  Google Scholar 

  43. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (the IDEAL 1 trial) [corrected]. J Clin Oncol 21:2237–2246

    Article  CAS  PubMed  Google Scholar 

  44. Parra HS, Cavina R, Latteri F, Zucali PA, Campagnoli E, Morenghi E, Grimaldi GC, Roncalli M, Santoro A (2004) Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib (‘Iressa’ ZD1839) in non-small-cell lung cancer. Br J Cancer 91:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  46. Takano T, Ohe Y, Sakamoto H, Tsuta K, Matsuno Y, Tateishi U, Yamamoto S, Nokihara H, Yamamoto N, Sekine I, Kunitoh H, Shibata T, Sakiyama T, Yoshida T, Tamura T (2005) Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 23:6829–6837

    Article  CAS  PubMed  Google Scholar 

  47. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn PA Jr, Varella-Garcia M (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97:643–655

    Article  CAS  PubMed  Google Scholar 

  48. Ingelman-Sundberg M, Gomez A (2010) The past, present and future of pharmacoepigenomics. Pharmacogenomics 11:625–627

    Article  CAS  PubMed  Google Scholar 

  49. Anttila S, Hakkola J, Tuominen P, Elovaara E, Husgafvel-Pursiainen K, Karjalainen A, Hirvonen A, Nurminen T (2003) Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res 63:8623–8628

    PubMed  CAS  Google Scholar 

  50. Patel SA, Bhambra U, Charalambous MP, David RM, Edwards RJ, Lightfoot T, Boobis AR, Gooderham NJ (2014) Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br J Cancer 111:2287–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramnath N, Nadal E, Jeon CK, Sandoval J, Colacino J, Rozek LS, Christensen PJ, Esteller M, Beer DG, Kim SH (2014) Epigenetic regulation of vitamin D metabolism in human lung adenocarcinoma. J Thorac Oncol 9:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kacevska M, Ivanov M, Wyss A, Kasela S, Milani L, Rane A, Ingelman-Sundberg M (2012) DNA methylation dynamics in the hepatic CYP3A4 gene promoter. Biochimie 94:2338–2344

    Article  CAS  PubMed  Google Scholar 

  53. Imai S, Kikuchi R, Kusuhara H, Yagi S, Shiota K, Sugiyama Y (2009) Analysis of DNA methylation and histone modification profiles of liver-specific transporters. Mol Pharmacol 75:568–576

    Article  CAS  PubMed  Google Scholar 

  54. Yang H, Nie Y, Li Y, Wan YJ (2010) Histone modification-mediated CYP2E1 gene expression and apoptosis of HepG2 cells. Exp Biol Med (Maywood) 235:32–39

    Article  CAS  Google Scholar 

  55. Englert NA, Luo G, Goldstein JA, Surapureddi S (2015) Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9. J Biol Chem 290:2264–2278

    Article  CAS  PubMed  Google Scholar 

  56. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  57. Cui H, Wang L, Gong P, Zhao C, Zhang S, Zhang K, Zhou R, Zhao Z, Fan H (2015) Deregulation between miR-29b/c and DNMT3A is associated with epigenetic silencing of the CDH1 gene, affecting cell migration and invasion in gastric cancer. PLoS One 10:e0123926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weng Z, Wang D, Zhao W, Song M, You F, Yang L, Chen L (2011) microRNA-450a targets DNA methyltransferase 3a in hepatocellular carcinoma. Exp Ther Med 2:951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gomez A, Ingelman-Sundberg M (2009) Epigenetic and microRNA-dependent control of cytochrome P450 expression: a gap between DNA and protein. Pharmacogenomics 10:1067–1076

    Article  CAS  PubMed  Google Scholar 

  60. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, Yang JM (2008) Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76:582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer E. Fandy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, K.R., Fandy, T.E. (2018). Pharmacogenomics and Pharmacoepigenomics: Impact on Therapeutic Strategies. In: Pathak, Y. (eds) Genomics-Driven Healthcare. Adis, Singapore. https://doi.org/10.1007/978-981-10-7506-3_12

Download citation

Publish with us

Policies and ethics