Skip to main content

Small Noncoding RNA-Based Regulation of Plant Immunity

  • Chapter
  • First Online:
Molecular Aspects of Plant-Pathogen Interaction

Abstract

Plant pathogens trigger massive changes in plant gene expression in the host as a result of transcriptional reprogramming. This activates several defense-related pathways such as hormonal imbalances, signal transduction, induction of defense-related proteins, ROS generation, small RNA expression, etc.; small RNA regulates myriad biological processes in several eukaryotes constituting a vital group of gene expression regulators. Among all, plants utilize small noncoding RNA machinery as a crucial means to respond and defend against pathogens by regulating immune-responsive genes. In turn, phytopathogens have evolved various effector molecules such as proteins and recently discovered sRNAs of fungal origin delivered into host cells to suppress plant immunity, to counter-defend the effect of host small RNA machinery. The significance of the small RNA-mediated plant defense response during plant-pathogen interaction have been well-established. Here, we discuss findings on noncoding small RNAs (sRNAs) from plants and pathogens, which regulate host immunity and pathogen virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932e45

    Article  Google Scholar 

  • Adkar-Purushothama CR, Brosseau C, Giguere T, Sano T, Moffett P, Perreault JP (2015) Small RNA derived from the virulence modulating region of the potato spindle tuber viroid silences callose synthase genes of tomato plants. Plant Cell 27:2178–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  PubMed  Google Scholar 

  • Avina-Padilla K, de la Vega OM, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP (2015) In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene 564:197–205

    Article  CAS  PubMed  Google Scholar 

  • Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T, Voinnet O (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24:904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bazzini AA, Almasia NI, Manacorda CA, Mongelli VC, Conti G, Maroniche GA et al (2009) Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biol 9:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Boccara M, Sarazin A, Thiebeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10:e1003883

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Campo S, Peris-Peris C, Sire C, Moreno AB, Donaire L, Zytnicki M et al (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199:212e27

    Article  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235:873e83

    Google Scholar 

  • Chen L, Luan Y, Zhai J (2015) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34(12):2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Crane YM, Gelvin SB (2007) RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatinrelated genes in agrobacterium-mediated root transformation. Proc Natl Acad Sci U S A 104:15156–15161. https://doi.org/10.1073/pnas.0706986104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci 109:2183–2191

    Article  Google Scholar 

  • Ellendorff U, Fradin EF, de Jonge R, Thomma BP (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60:591–602

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J, Lai L, Lin R, Jin C, Chen J (2012) Differential effects of cucumber mosaic virus satellite RNAs in the perturbation of microRNA-regulated gene expression in tomato. Mol Biol Rep 39:775–784

    Article  CAS  PubMed  Google Scholar 

  • Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M et al (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192:2359–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fudal I, Collemare J, Bohnert HU, Melayah D, Lebrun MH (2007) Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot Cell 6:546–554

    Article  CAS  PubMed  Google Scholar 

  • Guo N, Ye WW, Wu XL, Shen DY, Wang YC, Xing H, Dou DL (2011) Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54:954–958

    Article  CAS  PubMed  Google Scholar 

  • Gupta OP, Permar V, Koundal V, Singh UD, Praveen S (2012) MicroRNA regulated defense response in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Mol Biol Rep 39(2):817–824

    Article  CAS  PubMed  Google Scholar 

  • He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including aTuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452

    Article  CAS  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Jay F, Wang Y, Yu A, Taconnat L, Pelletier S, Colot V et al (2011) Misregulation of AUXIN RESPONSE FACTOR 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog 7:e1002035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H (2008) Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582:2679–2684. https://doi.org/10.1016/j.febslet.2008.06.053

    Article  CAS  PubMed  Google Scholar 

  • Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2004) One of the two Dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. J Biol Chem 279:44467–44474

    Article  CAS  PubMed  Google Scholar 

  • Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8:1635

    Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci 100:16125e30

    Google Scholar 

  • Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2013) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25(9):3311–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ, Zhang HY, Xu PZ, Zhou JM, Wu XJ, Wang PR, Wang WM (2014) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164:1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Zhao YT, Zhang JQ, Wang XJ, Fang RX, Jia YT (2011) Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae. BMC Genomics 12:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH (2014) The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 10:e1004755

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077e98

    Article  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131e51

    Article  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Seri FD (2012) Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J 70:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Nicolas FE, de Haro JP, Torres-Martinez S, Ruiz-Vazquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44:504–516

    Article  CAS  PubMed  Google Scholar 

  • Nunes CC, Gowda M, Sailsbery J, Xue M, Chen F et al (2011) Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics 12:288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014) MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10:e1004464

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinweha N, Asvarak T, Viboonjun U, Narangajavana J (2015) Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. J Plant Physiol 174:26–35

    Article  CAS  PubMed  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNAdependent RNA polymerases in viral siRNA biogenesis. PLoS One 4:e4971. https://doi.org/10.1371/journal.pone.0004971

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman V, Simon SA, Romag A, Demirci F, Mathioni SM et al (2013) Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 14:326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S et al (2012) Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 40:2020–2031

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke C, Abendroth U, Brock J, Serrania J, Becker A, Bonas U (2013) Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas. PLoS Pathog 9:e1003626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schramke V, Allshire R (2004) Those interfering little RNAs! Silencing and eliminating chromatin. Curr Opin Genet Dev 14:174–180

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyan J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NA, Eamens AL, Wang MB (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001e19

    Article  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varallyay E, Valoczi A, Agyi A, Burgyan J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci 15:337–345

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  • Wilms I, Overloper A, Nowrousian M, Sharma CM, Narberhaus F (2012b) Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol 9:446–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51:803–818

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang Z, Wang Y et al (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. elife 4:e05733

    PubMed Central  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Jue D, Li W, Zhang R, Chen M, Yang Q (2013) Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. PLoS One 8(8):e72840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M et al (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24:3575–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae inoculated cotton roots. PLoS One 7(4):e35765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H (2011a) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75:93–105

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Zhao HW, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin HL (2011b) Arabidopsis argonaute 2 regulates innate immunity via miRNA393_-mediated silencing of a golgi-localized SNARE gene, MEMB12. Mol Cell 42:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Fu Y, Xie J, Li B, Jiang D et al (2012a) Identification of micro RNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Gen Genomics 287:275–282

    Article  CAS  Google Scholar 

  • Zhou Q, Wang Z, Zhang J, Meng H, Huang B (2012b) Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol 116:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I (2013) miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8:e84390

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, O.P., Pandey, V., Meena, N.L., Karkute, S.G., Banerjee, S., Dahuja, A. (2018). Small Noncoding RNA-Based Regulation of Plant Immunity. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_9

Download citation

Publish with us

Policies and ethics