Small Noncoding RNA-Based Regulation of Plant Immunity

  • Om Prakash Gupta
  • Vanita Pandey
  • Nand Lal Meena
  • Suhas G. Karkute
  • Sagar Banerjee
  • Anil Dahuja
Chapter

Abstract

Plant pathogens trigger massive changes in plant gene expression in the host as a result of transcriptional reprogramming. This activates several defense-related pathways such as hormonal imbalances, signal transduction, induction of defense-related proteins, ROS generation, small RNA expression, etc.; small RNA regulates myriad biological processes in several eukaryotes constituting a vital group of gene expression regulators. Among all, plants utilize small noncoding RNA machinery as a crucial means to respond and defend against pathogens by regulating immune-responsive genes. In turn, phytopathogens have evolved various effector molecules such as proteins and recently discovered sRNAs of fungal origin delivered into host cells to suppress plant immunity, to counter-defend the effect of host small RNA machinery. The significance of the small RNA-mediated plant defense response during plant-pathogen interaction have been well-established. Here, we discuss findings on noncoding small RNAs (sRNAs) from plants and pathogens, which regulate host immunity and pathogen virulence.

Keywords

Small RNA Plant immunity Effector molecules Phytopathogen miRNAs 

References

  1. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932e45CrossRefGoogle Scholar
  2. Adkar-Purushothama CR, Brosseau C, Giguere T, Sano T, Moffett P, Perreault JP (2015) Small RNA derived from the virulence modulating region of the potato spindle tuber viroid silences callose synthase genes of tomato plants. Plant Cell 27:2178–2194CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979CrossRefPubMedGoogle Scholar
  4. Avina-Padilla K, de la Vega OM, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP (2015) In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene 564:197–205CrossRefPubMedGoogle Scholar
  5. Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T, Voinnet O (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24:904–915CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363CrossRefPubMedGoogle Scholar
  8. Bazzini AA, Almasia NI, Manacorda CA, Mongelli VC, Conti G, Maroniche GA et al (2009) Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biol 9:152CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boccara M, Sarazin A, Thiebeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10:e1003883CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190CrossRefPubMedGoogle Scholar
  11. Campo S, Peris-Peris C, Sire C, Moreno AB, Donaire L, Zytnicki M et al (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199:212e27CrossRefGoogle Scholar
  12. Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235:873e83Google Scholar
  13. Chen L, Luan Y, Zhai J (2015) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34(12):2013–2025CrossRefPubMedGoogle Scholar
  14. Crane YM, Gelvin SB (2007) RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatinrelated genes in agrobacterium-mediated root transformation. Proc Natl Acad Sci U S A 104:15156–15161. https://doi.org/10.1073/pnas.0706986104 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci 109:2183–2191CrossRefGoogle Scholar
  16. Ellendorff U, Fradin EF, de Jonge R, Thomma BP (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60:591–602CrossRefPubMedGoogle Scholar
  17. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219CrossRefPubMedPubMedCentralGoogle Scholar
  18. Feng J, Lai L, Lin R, Jin C, Chen J (2012) Differential effects of cucumber mosaic virus satellite RNAs in the perturbation of microRNA-regulated gene expression in tomato. Mol Biol Rep 39:775–784CrossRefPubMedGoogle Scholar
  19. Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M et al (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192:2359–2372CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fudal I, Collemare J, Bohnert HU, Melayah D, Lebrun MH (2007) Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot Cell 6:546–554CrossRefPubMedGoogle Scholar
  21. Guo N, Ye WW, Wu XL, Shen DY, Wang YC, Xing H, Dou DL (2011) Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54:954–958CrossRefPubMedGoogle Scholar
  22. Gupta OP, Permar V, Koundal V, Singh UD, Praveen S (2012) MicroRNA regulated defense response in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Mol Biol Rep 39(2):817–824CrossRefPubMedGoogle Scholar
  23. He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including aTuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452CrossRefPubMedGoogle Scholar
  24. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  25. Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014CrossRefPubMedGoogle Scholar
  26. Jay F, Wang Y, Yu A, Taconnat L, Pelletier S, Colot V et al (2011) Misregulation of AUXIN RESPONSE FACTOR 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog 7:e1002035CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jin H (2008) Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582:2679–2684. https://doi.org/10.1016/j.febslet.2008.06.053 CrossRefPubMedGoogle Scholar
  28. Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2004) One of the two Dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. J Biol Chem 279:44467–44474CrossRefPubMedGoogle Scholar
  29. Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8:1635Google Scholar
  30. Katiyar-Agarwal S, Gao S, Vivian Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci 100:16125e30Google Scholar
  32. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li Z, Peng J, Wen X, Guo H (2013) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25(9):3311–3328CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ, Zhang HY, Xu PZ, Zhou JM, Wu XJ, Wang PR, Wang WM (2014) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164:1077–1092CrossRefPubMedGoogle Scholar
  36. Liang H, Zhao YT, Zhang JQ, Wang XJ, Fang RX, Jia YT (2011) Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae. BMC Genomics 12:87CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH (2014) The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 10:e1004755CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077e98CrossRefGoogle Scholar
  39. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131e51CrossRefGoogle Scholar
  40. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. Science 312:436–439CrossRefPubMedGoogle Scholar
  41. Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Seri FD (2012) Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J 70:991–1003CrossRefPubMedGoogle Scholar
  42. Nicolas FE, de Haro JP, Torres-Martinez S, Ruiz-Vazquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44:504–516CrossRefPubMedGoogle Scholar
  43. Nunes CC, Gowda M, Sailsbery J, Xue M, Chen F et al (2011) Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics 12:288CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014) MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10:e1004464CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pinweha N, Asvarak T, Viboonjun U, Narangajavana J (2015) Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. J Plant Physiol 174:26–35CrossRefPubMedGoogle Scholar
  46. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760CrossRefPubMedGoogle Scholar
  47. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNAdependent RNA polymerases in viral siRNA biogenesis. PLoS One 4:e4971. https://doi.org/10.1371/journal.pone.0004971 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Raman V, Simon SA, Romag A, Demirci F, Mathioni SM et al (2013) Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 14:326CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064CrossRefPubMedGoogle Scholar
  50. Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S et al (2012) Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 40:2020–2031CrossRefPubMedGoogle Scholar
  51. Schmidtke C, Abendroth U, Brock J, Serrania J, Becker A, Bonas U (2013) Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas. PLoS Pathog 9:e1003626CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schramke V, Allshire R (2004) Those interfering little RNAs! Silencing and eliminating chromatin. Curr Opin Genet Dev 14:174–180CrossRefPubMedGoogle Scholar
  53. Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyan J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874CrossRefPubMedPubMedCentralGoogle Scholar
  55. Smith NA, Eamens AL, Wang MB (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001e19CrossRefGoogle Scholar
  57. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065CrossRefPubMedPubMedCentralGoogle Scholar
  58. Varallyay E, Valoczi A, Agyi A, Burgyan J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci 15:337–345CrossRefPubMedGoogle Scholar
  60. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589CrossRefPubMedPubMedCentralGoogle Scholar
  61. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338CrossRefPubMedGoogle Scholar
  63. Wilms I, Overloper A, Nowrousian M, Sharma CM, Narberhaus F (2012b) Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol 9:446–457CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51:803–818CrossRefPubMedGoogle Scholar
  65. Wu J, Yang Z, Wang Y et al (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. elife 4:e05733PubMedCentralGoogle Scholar
  66. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) BMC Plant Biol 10:123CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yang L, Jue D, Li W, Zhang R, Chen M, Yang Q (2013) Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. PLoS One 8(8):e72840CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M et al (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24:3575–3589CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae inoculated cotton roots. PLoS One 7(4):e35765CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H (2011a) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75:93–105CrossRefPubMedGoogle Scholar
  72. Zhang XM, Zhao HW, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin HL (2011b) Arabidopsis argonaute 2 regulates innate immunity via miRNA393_-mediated silencing of a golgi-localized SNARE gene, MEMB12. Mol Cell 42:356–366CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhou J, Fu Y, Xie J, Li B, Jiang D et al (2012a) Identification of micro RNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Gen Genomics 287:275–282CrossRefGoogle Scholar
  74. Zhou Q, Wang Z, Zhang J, Meng H, Huang B (2012b) Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol 116:1156–1162CrossRefPubMedGoogle Scholar
  75. Zhu QH, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I (2013) miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8:e84390CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Om Prakash Gupta
    • 1
    • 2
  • Vanita Pandey
    • 2
  • Nand Lal Meena
    • 3
  • Suhas G. Karkute
    • 4
  • Sagar Banerjee
    • 1
  • Anil Dahuja
    • 1
  1. 1.Division of BiochemistryICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of Quality and Basic SciencesICAR-Indian Institute of Wheat and Barley ResearchKarnalIndia
  3. 3.Plant BiochemistryICAR-Indian Institute of Millets ResearchHyderabadIndia
  4. 4.Division of Vegetable ImprovementICAR-Indian Institute of Vegetable ResearchVaranasiIndia

Personalised recommendations