Skip to main content

Logic Operation Model of the Complementer Based on Two-Domain DNA Strand Displacement

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

  • 1137 Accesses

Abstract

DNA strand replacement technology has the advantages of simple operation which makes it becomes a common method of DNA computing. A four bit binary number Complementer based on two-domain DNA strand displacement is proposed in this paper. It implements the function of converting binary code into complement code. Simulation experiment based on Visual DSD software is carried out. The simulation results show the correctness and feasibility of the logic model of the Complementer, and it makes useful exploration for further expanding the application of molecular logic circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Jian, Z., Zhang, Z., Shi, Y., Li, X., Lin, H.: Linearly programmed DNA-based molecular computer operated on magnetic particle surface in test-tube. Sci. Bull. 49(1), 17–22 (2004)

    Article  Google Scholar 

  3. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121 (2007)

    Article  Google Scholar 

  4. Wang, Z., Huang, D., Meng, H., Tang, C.: A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation. Biosyst. 114(1), 1–7 (2013)

    Article  Google Scholar 

  5. Wang, Z., Tan, J., Huang, D., Ren, Y., Ji, Z.: A biological algorithm to solve the assignment problem based on DNA molecules computation. Appl. Math. Comput. 244(2), 183–190 (2014)

    MATH  MathSciNet  Google Scholar 

  6. de Murieta, S.I., Rodríguez-Patón, A.: Probabilistic reasoning with a Bayesian DNA device based on strand displacement. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 110–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32208-2_9

    Chapter  Google Scholar 

  7. Condon, A., Kirkpatrick, B., Maňuch, J.: Reachability bounds for chemical reaction networks and strand displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 43–57. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32208-2_4

    Chapter  Google Scholar 

  8. Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)

    Article  Google Scholar 

  9. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)

    Article  Google Scholar 

  10. Zhang, D.Y.: Towards domain-based sequence design for DNA strand displacement reactions. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 162–175. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-8_15

    Chapter  Google Scholar 

  11. Hwang, M.T., Landon, P.B., Lee, J., Choi, D., Mo, A.H., Glinsky, G., et al.: Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. Proc. Natl. Acad. Sci. U.S.A. 113(26), 7088 (2016)

    Article  Google Scholar 

  12. Saghatelian, A., Volcker, N.H., Guckian, K.M., Lin, V.S., Ghadiri, M.R.: DNA-based photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 125(2), 346–347 (2003)

    Article  Google Scholar 

  13. Elbaz, J., Lioubashevski, O., Wang, F., Remacle, F., Levine, R.D., Willner, I.: DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5(6), 417–422 (2010)

    Article  Google Scholar 

  14. Kan, A., Sakai, Y., Shohda, K.I., Suyama, A.: A DNA based molecular logic gate capable of a variety of logical operations. Nat. Comput. 13(4), 573–581 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nishimura, T., Ogura, Y., Tanida, J.: Fluorescence resonance energy transfer-based mo-lecular logic circuit using a DNA scaffold. Appl. Phys. Lett. 101(23), 233703 (2012)

    Article  Google Scholar 

  16. Song, T., Garg, S., Mokhtar, R., Bui, H., Reif, J.: Analog computation by DNA strand displacement circuits. ACS Synth. Biol. 5(8), 898 (2016)

    Article  Google Scholar 

  17. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 26(2), 247–271 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2009). https://doi.org/10.1007/s11047-010-9236-7

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, M.: Principles of Computer Organization. Electronic Industry Press, South Norwalk (2001)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61772100, 61702070, 61672121, 61572093, 61402066, 61402067, 61370005, 31370778), the Program for Liaoning Innovative Research Team in University (No. LT2015002), the Basic Research Program of the Key Lab in Liaoning Province Educational Department (No. LZ2015004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, W., Zhou, C., Lv, H., Zhang, Q. (2017). Logic Operation Model of the Complementer Based on Two-Domain DNA Strand Displacement. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics