Skip to main content
Log in

Strand algebras for DNA computing

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

We present a process algebra for DNA computing, discussing compilation of other formal systems into the algebra, and compilation of the algebra into DNA structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Angluin D, Aspnes J, Diamadi Z, Fischer MJ, Peralta R (2006) Computation in networks of passively mobile finite-state sensors. Distrib Comput 18:235–253

    Google Scholar 

  • Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434

    Google Scholar 

  • Berry G, Boudol G (1989) The chemical abstract machine. In: Proceedings of the 17th POPL, ACM, pp 81–94

  • Cardelli L (2009) Artificial biochemistry. In: Condon A, Harel D, Kok JN, Salomaa A, Winfree E (eds) Algorithmic bioprocesses. Springer, Berlin

  • Cardelli L (2008) On process rate semantics. Theor Comput Sci 391(3):190–215

    Article  MathSciNet  MATH  Google Scholar 

  • Cardelli L (2009) Strand algebras for DNA computing (preliminary version). In: DNA computing and molecular programming, 15th International conference, DNA 15. LNCS 5877. Springer, pp 12–24

  • Cardelli L, Zavattaro G (2010) Turing universality of the biochemical ground form. Math Struct Comput Sci 20(1):45–73

    Article  MathSciNet  MATH  Google Scholar 

  • Cardelli L, Qian L, Soloveichik D, Winfree E (2009) Personal communications

  • Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325(1):69–110

    Article  MathSciNet  MATH  Google Scholar 

  • Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49:65–88

    Article  MathSciNet  MATH  Google Scholar 

  • Fournet C, Gonthier G (2000) The join calculus: a language for distributed mobile programming. In: Proceedings of the Applied Semantics Summer School (APPSEM), Caminha, 9–15 September

  • Hagiya M (2004) Towards molecular programming. In: Ciobanu G, Rozenberg G (eds) Modelling in molecular biology. Springer, Heidelberg

  • Kari L, Konstantinidis S, Sosík P (2005) On properties of bond-free DNA languages. Theor Comput Sci 334(1–3):131–159

    Article  MATH  Google Scholar 

  • Marathe A, Condon AE, Corn RM (2001) On combinatorial DNA word design. J Comp Biol 8(3):201–219

    Article  Google Scholar 

  • Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge

    Google Scholar 

  • Phillips A, Cardelli L (2009) A programming language for composable DNA circuits. J R Soc Interface 6:S419–S436

    Article  Google Scholar 

  • Qian L, Winfree E (2008) A simple DNA gate motif for synthesizing large-scale circuits. In: Proceedings of the 14th international meeting on DNA computing

  • Reisig W (1985) Petri nets: an introduction. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Regev A, Panina EM, Silverman W, Cardelli L, Shapiro E (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325(1):141–167

    Article  MathSciNet  MATH  Google Scholar 

  • Sakamoto K, Kiga D, Komiya K, Gouzu H, Yokoyama S, Ikeda S, Sugiyama H, Hagiya M (1999) State transitions by molecules. Biosystems 52:81–91

    Article  Google Scholar 

  • Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Google Scholar 

  • Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chemical reaction networks. Nat Comput 7:615–633

    Article  MathSciNet  MATH  Google Scholar 

  • Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. PNAS. doi:10.1073/pnas.0909380107

  • Wolkenhauer O, Ullah M, Kolch W, Cho K (2004) Modelling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Trans Nanobiosci 3:200–207

    Article  Google Scholar 

  • Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  Google Scholar 

  • Yurke B, Mills AP Jr (2003) Using DNA to power nanostructures. Genet Program Evolvable Mach 4(2):111–122

    Google Scholar 

  • Zavattaro G, Cardelli L (2008) Termination problems in chemical kinetics. In: van Breugel F, Chechik M (eds) CONCUR 2008—concurrency theory, 19th international conference. LNCS 5201. Springer, pp 477–491

  • Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cardelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardelli, L. Strand algebras for DNA computing. Nat Comput 10, 407–428 (2011). https://doi.org/10.1007/s11047-010-9236-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-010-9236-7

Keywords

Navigation