Skip to main content

Acid- and Redox-Responsive Smart Polymeric Nanomaterials for Controlled Drug Delivery

  • Chapter
  • First Online:
In Vivo Self-Assembly Nanotechnology for Biomedical Applications

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In cancer therapy, the lack of selectivity of anticancer drug remains a major challenge for chemotherapy. Polymeric nanomaterials have enabled more effective drug design and development through tumor passive and active targeted drug delivery strategies. Considering the possible inefficient drug release at the tumor site, stimuli-responsive chemical bonds were introduced into the polymeric nanocarriers for controlled drug release and enhanced therapeutic efficacy toward tumor. Numerous external and internal stimuli were applied to trigger the chemical structure change of polymeric nanovehicles, causing microstructural rearrangement, hydrophilic/hydrophobic balance transformation, or disassembly into single polymer chains. Characteristic changes in tumor site such as pH (~pH 6.8 in tumor microenvironment and ~pH 5–6 in endosomes/lysosomes) or reductive/oxidative gradients in cytoplasm/mitochondria have been investigated extensively as internal stimuli for triggering drug release from polymeric nanocarriers. Therefore, it is important to develop acid- and redox-responsive polymeric nanomaterials as potential anticancer nanodrugs. In this review, we summarize recent progress in the preparation of these responsive polymers and their applications in anticancer drug delivery. We will focus on chemical structure, stimuli-responsive bond, self-assembly property, and drug release behavior of polymeric nanomaterials, which may offer a guide for optimal design of smart targeted nanodrugs in clinical cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao Y, DePinho RA, Ernst M, Vousden K (2011) Cancer research: past, present and future. Nat Rev Cancer 11(10):749–754

    Article  CAS  Google Scholar 

  2. Rothenberg ML, Carbone DR, Johnson DH (2003) Improving the evaluation of new cancer treatments: challenges and opportunities. Nat Rev Cancer 3(4):303–309

    Article  CAS  Google Scholar 

  3. Langer R (1998) Drug delivery and targeting. Nature 392(6679):5–10

    CAS  Google Scholar 

  4. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Disc 7(9):771–782

    Article  CAS  Google Scholar 

  5. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliver Rev 56(11):1649–1659

    Article  CAS  Google Scholar 

  6. Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliver Rev 64(9):836–851

    Article  CAS  Google Scholar 

  7. Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19(10):1553–1566

    Article  CAS  Google Scholar 

  8. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764

    Article  CAS  Google Scholar 

  9. Phillips MA, Gran ML, Peppas NA (2010) Targeted nanodelivery of drugs and diagnostics. Nano Today 5(2):143–159

    Article  CAS  Google Scholar 

  10. Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431

    Article  CAS  Google Scholar 

  11. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50

    Article  CAS  Google Scholar 

  12. Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6(3):193–210

    CAS  Google Scholar 

  13. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  Google Scholar 

  14. Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45(8):1198–1215

    Article  CAS  Google Scholar 

  15. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliver Rev 47(1):113–131

    Article  CAS  Google Scholar 

  16. Nishiyama N, Kataoka K (2006) Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. Adv Polym Sci 193:67–101

    Article  CAS  Google Scholar 

  17. Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10):1521–1532

    Article  CAS  Google Scholar 

  18. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    Article  CAS  Google Scholar 

  19. Albanese A, Tang PS, Chan WCW (2012) The Effect of nanoparticle size, shape, and surface chemistry on biological systems. In: Yarmush ML (ed) Annual review of biomedical engineering, vol 14, pp 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124

    Article  CAS  Google Scholar 

  20. Doane TL, Chuang C-H, Hill RJ, Burda C (2012) Nanoparticle zeta-potentials. Acc Chem Res 45(3):317–326

    Article  CAS  Google Scholar 

  21. Kim ST, Saha K, Kim C, Rotello VM (2013) The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 46(3):681–691

    Article  CAS  Google Scholar 

  22. Jo DH, Kim JH, Lee TG, Kim JH (2015) Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed Nanotechnol Biol Med 11(7):1603–1611

    Article  CAS  Google Scholar 

  23. Salatin S, Maleki Dizaj S, Yari Khosroushahi A (2015) Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 39(8):881–890

    Article  CAS  Google Scholar 

  24. Ruoslahti E (2012) Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater 24(28):3747–3756

    Article  CAS  Google Scholar 

  25. Corti A, Pastorino F, Curnis F, Arap W, Ponzoni M, Pasqualini R (2012) Targeted drug delivery and penetration into solid tumors. Med Res Rev 32(5):1078–1091

    Article  CAS  Google Scholar 

  26. Danhier F, Le Breton A, Preat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9(11):2961–2973

    Article  CAS  Google Scholar 

  27. Kapoor P, Singh H, Gautam A, Chaudhary K, Kumar R, Raghava GPS (2012) TumorHoPe: A database of tumor homing peptides. PLoS One 7(4)

    Article  CAS  Google Scholar 

  28. Chen K, Chen X (2011) Integrin targeted delivery of Chemotherapeutics. Theranostics 1:189–200

    Article  CAS  Google Scholar 

  29. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32(11):1275–1343

    Article  CAS  Google Scholar 

  30. Ramos J, Imaz A, Callejas-Fernández J, Barbosa-Barros L, Estelrich J, Quesada-Pérez M, Forcada J (2011) Soft nanoparticles (thermo-responsive nanogels and bicelles) with biotechnological applications: from synthesis to simulation through colloidal characterization. Soft Matter 7(11):5067

    Article  CAS  Google Scholar 

  31. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42(17):7214–7243

    Article  CAS  Google Scholar 

  32. Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE (2010) Micelles based on HPMA copolymers. Adv Drug Deliver Rev 62(2):231–239

    Article  CAS  Google Scholar 

  33. Schumers J-M, Fustin C-A, Gohy J-F (2010) Light-responsive block copolymers. Macromol Rapid Commun 31(18):1588–1607

    Article  CAS  Google Scholar 

  34. Zhao Y (2009) Photocontrollable block copolymer micelles: what can we control? J Mater Chem 19(28):4887–4895

    Article  CAS  Google Scholar 

  35. Husseini GA, Pitt WG (2009) Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci 98(3):795–811

    Article  CAS  Google Scholar 

  36. Dai Q, Nelson A (2010) Magnetically-responsive self assembled composites. Chem Soc Rev 39(11):4057

    Article  CAS  Google Scholar 

  37. Brazel CS (2008) Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 26(3):644–656

    Article  CAS  Google Scholar 

  38. Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132(3):164–170

    Article  CAS  Google Scholar 

  39. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167

    Article  CAS  Google Scholar 

  40. Park I-K, Singha K, Arote RB, Choi Y-J, Kim WJ, Cho C-S (2010) pH-responsive polymers as gene carriers. Macromol Rapid Commun 31(13):1122–1133

    Article  CAS  Google Scholar 

  41. Ulbrich K (2004) Polymeric anticancer drugs with pH-controlled activation. Adv Drug Deliver Rev 56(7):1023–1050

    Article  CAS  Google Scholar 

  42. Gao Y-J, Qiao Z-Y, Wang H (2016) Polymers with tertiary amine groups for drug delivery and bioimaging. Sci China-Chem 59(8):991–1002

    Article  CAS  Google Scholar 

  43. Hahn ME, Gianneschi NC (2011) Enzyme-directed assembly and manipulation of organic nanomaterials. Chem Commun 47(43):11814–11821

    Article  CAS  Google Scholar 

  44. Chen Y, Liang G (2012) Enzymatic self-assembly of nanostructures for theranostics. Theranostics 2(2):139–147

    Article  CAS  Google Scholar 

  45. Hu J, Zhang G, Liu S (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 41(18):5933–5949

    Article  CAS  Google Scholar 

  46. Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV (2013) Enzyme responsive materials: design strategies and future developments. Biomater Sci 1(1):11–39

    Article  CAS  Google Scholar 

  47. Andresen TL, Thompson DH, Kaasgaard T (2010) Enzyme-triggered nanomedicine: drug release strategies in cancer therapy (invited review). Mol Membr Biol 27(7):353–363

    Article  CAS  Google Scholar 

  48. Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5):1519–1528

    Article  CAS  Google Scholar 

  49. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  Google Scholar 

  50. Song C-C, Du F-S, Li Z-C (2014) Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2(22):3413

    Article  CAS  Google Scholar 

  51. Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30(12):2180–2198

    Article  CAS  Google Scholar 

  52. Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    Article  CAS  Google Scholar 

  53. Alkilany AM, Lohse SE, Murphy CJ (2013) The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc Chem Res 46(3):650–661

    Article  CAS  Google Scholar 

  54. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46(3):792–801

    Article  CAS  Google Scholar 

  55. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140

    Article  CAS  Google Scholar 

  56. Lian T, Ho RJY (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    Article  CAS  Google Scholar 

  57. Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast cancer research: BCR 4(3):95–99

    Article  CAS  Google Scholar 

  58. Kraft JC, Freeling JP, Wang Z, Ho RJY (2014) Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 103(1):29–52

    Article  CAS  Google Scholar 

  59. van der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM (2014) Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195:72–85

    Article  CAS  Google Scholar 

  60. W-d Wu, X-l Yi, L-x Jiang, Y-z Li, Gao J, Zeng Y, R-d Yi, L-p Dai, Li W, X-y Ci, D-y Si, C-x Liu (2015) The targeted-liposome delivery system of antitumor drugs. Curr Drug Metab 16(10):894–910

    Article  CAS  Google Scholar 

  61. Lavasanifar A, Samuel J, Kwon GS (2002) Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliver Rev 54(2):169–190

    Article  CAS  Google Scholar 

  62. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1–3):169–188

    Article  CAS  Google Scholar 

  63. Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138(3):214–223

    Article  CAS  Google Scholar 

  64. Meng FH, Zhong ZY, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromol 10(2):197–209

    Article  CAS  Google Scholar 

  65. Brinkhuis RP, Rutjes FPJT, van Hest JCM (2011) Polymeric vesicles in biomedical applications. Polym Chem 2(7):1449–1462

    Article  CAS  Google Scholar 

  66. Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W (2011) Polymeric Vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 44(10):1039–1049

    Article  CAS  Google Scholar 

  67. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie-international Edition 48(30):5418–5429

    Article  CAS  Google Scholar 

  68. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35(1–2):174–211

    Article  CAS  Google Scholar 

  69. Oishi M, Nagasaki Y (2010) Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine 5(3):451–468

    Article  CAS  Google Scholar 

  70. Gil E, Hudson S (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  71. Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliver Rev 61(13):1177–1188

    Article  CAS  Google Scholar 

  72. CdlH Alarcon, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34(3):276–285

    Article  Google Scholar 

  73. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliver Rev 65(1):10–16

    Article  CAS  Google Scholar 

  74. Rijcken CJF, Soga O, Hennink WE, van Nostrum CF (2007) Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. J Control Release 120(3):131–148

    Article  CAS  Google Scholar 

  75. Ge Z, Liu S (2013) Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 42(17):7289–7325

    Article  CAS  Google Scholar 

  76. Ma X, Tian H (2014) Stimuli-responsive supramolecular polymers in aqueous solution. Acc Chem Res 47(7):1971–1981

    Article  CAS  Google Scholar 

  77. Siegel RA (2014) Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review. J Control Release 190:337–351

    Article  CAS  Google Scholar 

  78. Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4(5):325–330

    Article  CAS  Google Scholar 

  79. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61

    Article  CAS  Google Scholar 

  80. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195

    Article  CAS  Google Scholar 

  81. Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6(2):176–185

    Article  CAS  Google Scholar 

  82. Lee ES, Oh KT, Kim D, Youn YS, Bae YH (2007) Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly (ethylene glycol)-b-poly(L-histidine). J Control Release 123(1):19–26

    Article  CAS  Google Scholar 

  83. Yin HQ, Lee ES, Kim D, Lee KH, Oh KT, Bae YH (2008) Physicochemical characteristics of pH-sensitive poly(L-Histidine)-b-poly (ethylene glycol)/poly(L-Lactide)-b-poly(ethylene glycol) mixed micelles. J Control Release 126(2):130–138

    Article  CAS  Google Scholar 

  84. Oh KT, Lee ES, Kim D, Bae YH (2008) L-Histidine-based pH-sensitive anticancer drug carrier micelle: Reconstitution and brief evaluation of its systemic toxicity. Int J Pharm 358(1–2):177–183

    Article  CAS  Google Scholar 

  85. Kim D, Gao ZG, Lee ES, Bae YH (2009) In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharmaceutics 6(5):1353–1362

    Article  CAS  Google Scholar 

  86. Lee ES, Gao Z, Kim D, Park K, Kwon IC, Bae YH (2008) Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Control Release 129(3):228–236

    Article  CAS  Google Scholar 

  87. Tang YQ, Liu SY, Armes SP, Billingham NC (2003) Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromol 4(6):1636–1645

    Article  CAS  Google Scholar 

  88. Giacomelli C, Le Men L, Borsali R, Lai-Kee-Him J, Brisson A, Armes SP, Lewis AL (2006) Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromol 7(3):817–828

    Article  CAS  Google Scholar 

  89. Licciardi M, Craparo EF, Giammona G, Armes SP, Tang Y, Lewis AL (2008) In vitro biological evaluation of folate-functionalized block copolymer micelles for selective anti-cancer drug delivery. Macromol Biosci 8 (7):615–626

    Article  CAS  Google Scholar 

  90. Xu PS, Van Kirk EA, Murdoch WJ, Zhan YH, Isaak DD, Radosz M, Shen YQ (2006) Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles. Biomacromol 7(3):829–835

    Article  CAS  Google Scholar 

  91. Shen Y, Zhan Y, Tang J, Xu P, Johnson PA, Radosz M, Van Kirk EA, Murdoch WJ (2008) Multifunctioning pH-responsive nanoparticles from hierarchical self-assembly of polymer brush for cancer drug delivery. AlChE J 54(11):2979–2989

    Article  CAS  Google Scholar 

  92. Lynn DM, Langer R (2000) Degradable Poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc 122(44):10761–10768

    Article  CAS  Google Scholar 

  93. Akinc A, Anderson DG, Lynn DM, Langer R (2003) Synthesis of poly(β-amino ester)s optimized for highly effective gene delivery. Bioconjug Chem 14(5):979–988

    Article  CAS  Google Scholar 

  94. Akinc A, Lynn DM, Anderson DG, Langer R (2003) Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J Am Chem Soc 125(18):5316–5323

    Article  CAS  Google Scholar 

  95. Anderson DG, Lynn DM, Langer R (2003) Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed 42(27):3153–3158

    Article  CAS  Google Scholar 

  96. Green JJ, Langer R, Anderson DG (2008) A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res 41(6):749–759

    Article  CAS  Google Scholar 

  97. Lynn DM, Amiji MM, Langer R (2001) pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH. Angew Chem Int Ed 40(9):1707–1710

    Article  CAS  Google Scholar 

  98. Shenoy D, Little S, Langer R, Amiji M (2005) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm 2(5):357–366

    Article  CAS  Google Scholar 

  99. Ko J, Park K, Kim YS, Kim MS, Han JK, Kim K, Park RW, Kim IS, Song HK, Lee DS, Kwon IC (2007) Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (beta-amino ester) block copolymer micelles for cancer therapy. J Control Release 123(2):109–115

    Article  CAS  Google Scholar 

  100. Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S, Lee H, Park RW, Kim IS, Kim K, Kwon IC, Jeong SY, Lee DS (2010) Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 144(2):259–266

    Article  CAS  Google Scholar 

  101. Song W, Tang Z, Li M, Lv S, Yu H, Ma L, Zhuang X, Huang Y, Chen X (2012) Tunable pH-sensitive Poly(beta-amino ester)s synthesized from primary amines and diacrylates for intracellular drug delivery. Macromol Biosci 12(10):1375–1383

    Article  CAS  Google Scholar 

  102. Qiao Z-Y, Qiao S-L, Fan G, Fan Y-S, Chen Y, Wang H (2014) One-pot synthesis of pH-sensitive poly(RGD-co-[small beta]-amino ester)s for targeted intracellular drug delivery. Polym Chem 5:844–853

    Article  CAS  Google Scholar 

  103. Qiao Z-Y, Zhang D, Hou C-Y, Zhao S-M, Liu Y, Gao Y-J, Tan N-H, Wang H (2015) A pH-responsive natural cyclopeptide RA-V drug formulation for improved breast cancer therapy. J Mater Chem B 3(22):4514–4523

    Article  CAS  Google Scholar 

  104. Park SY, Baik HJ, Oh YT, Oh KT, Youn YS, Lee ES (2011) A smart polysaccharide/drug conjugate for photodynamic therapy. Angew Chem Int Ed 50(7):1644–1647

    Article  CAS  Google Scholar 

  105. Qiao Z-Y, Hou C-Y, Zhang D, Liu Y, Lin Y-X, An H-W, Li X-J, Wang H (2015) Self-assembly of cytotoxic peptide conjugated Poly([small beta]-amino ester)s for synergistic cancer chemotherapy. J Mater Chem B 3:2943–2953

    Article  CAS  Google Scholar 

  106. Wang Y, Lin Y-X, Qiao Z-Y, An H-W, Qiao S-L, Wang L, Rajapaksha RPYJ, Wang H (2015) Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Adv Mater 27(16):2627–2634

    Article  CAS  Google Scholar 

  107. Gillies ER, Jonsson TB, Frechet JMJ (2004) Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 126(38):11936–11943

    Article  CAS  Google Scholar 

  108. Gillies ER, Frechet JMJ (2005) pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 16(2):361–368

    Article  CAS  Google Scholar 

  109. Gillies ER, Frechet JMJ (2003) A new approach towards acid sensitive copolymer micelles for drug delivery. Chem Commun 14:1640–1641

    Article  Google Scholar 

  110. Jain R, Standley SM, Frechet JMJ (2007) Synthesis and degradation of pH-sensitive linear poly(amidoamine)s. Macromolecules 40(3):452–457

    Article  CAS  Google Scholar 

  111. Bachelder EM, Beaudette TT, Broaders KE, Paramonov SE, Dashe J, Frechet JMJ (2008) Acid-degradable polyurethane particles for protein-based vaccines: Biological evaluation and in vitro analysis of particle degradation products. Mol Pharm 5(5):876–884

    Article  CAS  Google Scholar 

  112. Heffernan MJ, Murthy N (2005) Polyketal nanoparticles: A new pH-sensitive biodegradable drug delivery vehicle. Bioconjug Chem 16(6):1340–1342

    Article  CAS  Google Scholar 

  113. Yang SC, Bhide M, Crispe IN, Pierce RH, Murthy N (2008) Polyketal copolymers: A new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem 19(6):1164–1169

    Article  CAS  Google Scholar 

  114. Chen W, Meng FH, Li F, Ji SJ, Zhong ZY (2009) pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release. Biomacromol 10(7):1727–1735

    Article  CAS  Google Scholar 

  115. Chen W, Meng FH, Cheng R, Zhong ZY (2010) pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 142(1):40–46

    Article  CAS  Google Scholar 

  116. Griset AP, Walpole J, Liu R, Gaffey A, Colson YL, Grinstaff MW (2009) Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J Am Chem Soc 131(7):2469–2471

    Article  CAS  Google Scholar 

  117. Shim MS, Kwon YJ (2008) Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine. Biomacromol 9(2):444–455

    Article  CAS  Google Scholar 

  118. Shim MS, Kwon YJ (2009) Controlled cytoplasmic and nuclear localization of plasmid DNA and siRNA by differentially tailored polyethylenimine. J Control Release 133(3):206–213

    Article  CAS  Google Scholar 

  119. Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JMJ (2008) Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc 130(32):10494–10495

    Article  CAS  Google Scholar 

  120. Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JMJ (2009) Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc Natl Acad Sci USA 106(14):5497–5502

    Article  CAS  Google Scholar 

  121. Cohen JA, Beaudette TT, Cohen JL, Brooders KE, Bachelder EM, Frechet JMJ (2010) Acetal-modified dextran microparticles with controlled degradation kinetics and surface functionality for gene delivery in phagocytic and non-phagocytic cells. Adv Mater 22 (32):3593

    Article  CAS  Google Scholar 

  122. Heller J, Barr J (2004) Poly(ortho esters) - From concept to reality. Biomacromol 5(5):1625–1632

    Article  CAS  Google Scholar 

  123. Wang C, Ge Q, Ting D, Nguyen D, Shen HR, Chen JZ, Eisen HN, Heller J, Langer R, Putnam D (2004) Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 3(3):190–196

    Article  CAS  Google Scholar 

  124. Qiao Z-Y, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent Oligo(ethylene glycol) Chains and cyclic ortho ester groups. Macromolecules 43(15):6485–6494

    Article  CAS  Google Scholar 

  125. Qiao Z-Y, Cheng J, Ji R, Du F-S, Liang D-H, Ji S-P, Li Z-C (2013) Biocompatible acid-labile polymersomes from PEO-b-PVA derived amphiphilic block copolymers. RSC Adv 3(46):24345–24353

    Article  CAS  Google Scholar 

  126. Huang XN, Du FS, Ju R, Li ZC (2007) Novel acid-labile, thermoresponsive poly(methacrylamide)s with pendent ortho ester moieties. Macromol Rapid Commun 28(5):597–603

    Article  CAS  Google Scholar 

  127. Huang XN, Du FS, Cheng J, Dong YQ, Liang DH, Ji SP, Lin SS, Li ZC (2009) Acid-sensitive polymeric micelles based on thermoresponsive block copolymers with pendent cyclic orthoester groups. Macromolecules 42(3):783–790

    Article  CAS  Google Scholar 

  128. Qiao Z-Y, Ji R, Huang X-N, Du F-S, Zhang R, Liang D-H, Li Z-C (2013) Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release. Biomacromol 14(5):1555–1563

    Article  CAS  Google Scholar 

  129. Tang R, Ji W, Panus D, Palumbo RN, Wang C (2011) Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells. J Control Release 151(1):18–27

    Article  CAS  Google Scholar 

  130. Hruby M, Konak C, Ulbrich K (2005) Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 103(1):137–148

    Article  CAS  Google Scholar 

  131. Chytil P, Etrych T, Konak C, Sirova M, Mrkvan T, Rihova B, Ulbrich K (2006) Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: Effect of polymer chain modification. J Control Release 115(1):26–36

    Article  CAS  Google Scholar 

  132. Etrych T, Chytil P, Mrkvan T, Sirova M, Rihova B, Ulbrich K (2008) Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J Control Release 132(3):184–192

    Article  CAS  Google Scholar 

  133. Etrych T, Mrkvan T, Rihova B, Ulbrich K (2007) Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J Control Release 122(1):31–38

    Article  CAS  Google Scholar 

  134. Etrych T, Sirova M, Starovoytova L, Rihova B, Ulbrich K (2010) HPMA copolymer conjugates of paclitaxel and docetaxel with ph-controlled drug release. Mol Pharm 7(4):1015–1026

    Article  CAS  Google Scholar 

  135. Chytil P, Koziolova E, Janouskova O, Kostka L, Ulbrich K, Etrych T (2015) Synthesis and properties of Star HPMA copolymer nanocarriers synthesised by raft polymerisation designed for selective anticancer drug delivery and imaging. Macromol Biosci 15(6):839–850

    Article  CAS  Google Scholar 

  136. Dozono H, Yanazume S, Nakamura H, Etrych T, Chytil P, Ulbrich K, Fang J, Arimura T, Douchi T, Kobayashi H, Ikoma M, Maeda H (2016) HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage IV prostate cancer and extensive lung and bone metastases. Target Oncol 11(1):101–106

    Article  Google Scholar 

  137. Kim D, Lee ES, Park K, Kwon IC, Bae YH (2008) Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharm Res 25(9):2074–2082

    Article  CAS  Google Scholar 

  138. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16(1):122–130

    Article  CAS  Google Scholar 

  139. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2009) Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials 30(29):5757–5766

    Article  CAS  Google Scholar 

  140. Wang WL, Wang B, Ma XJ, Liu SR, Shang XD, Yu XF (2016) Tailor-made pH-Responsive Poly(choline phosphate) prodrug as a drug delivery system for rapid cellular internalization. Biomacromol 17(6):2223–2232

    Article  CAS  Google Scholar 

  141. Jia ZF, Wong LJ, Davis TP, Bulmus V (2008) One-Pot conversion of RAFT-generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid- and reductant-sensitive crosslinked micelles. Biomacromol 9(11):3106–3113

    Article  CAS  Google Scholar 

  142. Wang Y, Zhang L, Zhang XB, Wei X, Tang ZM, Zhou SB (2016) Precise polymerization of a highly tumor microenvironment-responsive nanoplatform for strongly enhanced intracellular drug release. ACS Appl Mater Interfaces 8(9):5833–5846

    Article  CAS  Google Scholar 

  143. Zhang Y, Ding JX, Li MQ, Chen X, Xiao CS, Zhuang XL, Huang YB, Chen XS (2016) One-step “click chemistry”-synthesized cross-linked prodrug nanogel for highly selective intracellular drug delivery and upregulated antitumor efficacy. ACS Appl Mater Interfaces 8(17):10673–10682

    Article  CAS  Google Scholar 

  144. Lu H, Wang DL, Kazane S, Javahishvili T, Tian F, Song F, Sellers A, Barnett B, Schultz PG (2013) Site-specific antibody-polymer conjugates for siRNA delivery. J Am Chem Soc 135(37):13885–13891

    Article  CAS  Google Scholar 

  145. Yoo HS, Lee EA, Park TG (2002) Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 82(1):17–27

    Article  CAS  Google Scholar 

  146. Zhu L, Zhao L, Qu X, Yang Z (2012) pH-sensitive polymeric vesicles from coassembly of amphiphilic cholate grafted poly(l-lysine) and acid-cleavable polymer-drug conjugate. Langmuir 28(33):11988–11996

    Article  CAS  Google Scholar 

  147. Yang S, Zhu F, Wang Q, Liang F, Qu X, Gan Z, Yang Z (2015) Combinatorial targeting polymeric micelles for anti-tumor drug delivery. J Mater Chem B 3(19):4043–4051

    Article  CAS  Google Scholar 

  148. Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17(4):943–949

    Article  CAS  Google Scholar 

  149. Ding CX, Gu JX, Qu XZ, Yang ZZ (2009) Preparation of multifunctional drug carrier for tumor-specific uptake and enhanced intracellular delivery through the conjugation of weak acid labile linker. Bioconjug Chem 20(6):1163–1170

    Article  CAS  Google Scholar 

  150. Van Horn BA, Iha RK, Wooley KL (2008) Sequential and single-step, one-pot strategies for the transformation of hydrolytically degradable polyesters into multifunctional systems. Macromolecules 41(5):1618–1626

    Article  CAS  Google Scholar 

  151. Carmona S, Jorgensen MR, Kolli S, Crowther C, Salazar FH, Marion PL, Fujino M, Natori Y, Thanou M, Arbuthnot P, Miller AD (2009) Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol Pharm 6(3):706–717

    Article  CAS  Google Scholar 

  152. Kolli S, Wong S-P, Harbottle R, Johnston B, Thanou M, Miller AD (2013) pH-triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Bioconj Chem 24(3):314–332

    Article  CAS  Google Scholar 

  153. Oishi M, Sasaki S, Nagasaki Y, Kataoka K (2003) PH-Responsive oligodeoxynucleotide (ODN)-poly(ethylene glycol) conjugate through acid-labile beta-thiopropionate linkage: Preparation and polyion complex micelle formation. Biomacromol 4(5):1426–1432

    Article  CAS  Google Scholar 

  154. Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K (2005) Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile ss-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc 127(6):1624–1625

    Article  CAS  Google Scholar 

  155. Dan K, Ghosh S (2013) One-pot synthesis of an acid-labile amphiphilic triblock copolymer and its ph-responsive vesicular assembly. Angew Chem Int Ed 52(28):7300–7305

    Article  CAS  Google Scholar 

  156. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE, Wolff JA (2007) Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA 104(32):12982–12987

    Article  CAS  Google Scholar 

  157. Lee Y, Miyata K, Oba M, Ishii T, Fukushima S, Han M, Koyama H, Nishiyama N, Kataoka K (2008) Charge-conversion ternary polyplex with endosome disruption moiety: a technique for efficient and safe gene delivery. Angewandte Chemie-Int Edition 47(28):5163–5166

    Article  CAS  Google Scholar 

  158. Lee Y, Ishii T, Cabral H, Kim HJ, Seo JH, Nishiyama N, Oshima H, Osada K, Kataoka K (2009) Charge-conversional polyionic complex micelles-efficient nanocarriers for protein delivery into cytoplasm. Angewandte Chemie-International Edition 48(29):5309–5312

    Article  CAS  Google Scholar 

  159. Takemoto H, Miyata K, Hattori S, Ishii T, Suma T, Uchida S, Nishiyama N, Kataoka K (2013) Acidic pH-responsive siRNA conjugate for reversible carrier stability and accelerated endosomal escape with reduced IFN alpha-associated immune response. Angewandte Chemie-Int Edition 52(24):6218–6221

    Article  CAS  Google Scholar 

  160. Hu FQ, Zhang YY, You J, Yuan H, Du YZ (2012) pH triggered doxorubicin delivery of PEGylated glycolipid conjugate micelles for tumor targeting therapy. Mol Pharm 9(9):2469–2478

    Article  CAS  Google Scholar 

  161. Lavignac N, Nicholls JL, Ferruti P, Duncan R (2009) Poly(amidoamine) conjugates containing doxorubicin bound via an acid-sensitive linker. Macromol Biosci 9(5):480–487

    Article  CAS  Google Scholar 

  162. Yuan L, Chen WL, Li J, Hu JH, Yan JJ, Yang D (2012) PEG-b-PtBA-b-PHEMA well-defined amphiphilic triblock copolymer: Synthesis, self-assembly, and application in drug delivery. J Polymer Sci Part Polymer Chem 50(21):4579–4588

    Article  CAS  Google Scholar 

  163. Wang K, Zhang XF, Liu Y, Liu C, Jiang BH, Jiang YY (2014) Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials 35(30):8735–8747

    Article  CAS  Google Scholar 

  164. Lin CJ, Kuan CH, Wang LW, Wu HC, Chen YC, Chang CW, Huang RY, Wang TW (2016) Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials 90:12–26

    Article  CAS  Google Scholar 

  165. Maier K, Wagner E (2012) Acid-labile traceless click linker for protein transduction. J Am Chem Soc 134(24):10169–10173

    Article  CAS  Google Scholar 

  166. Li HJ, Du JZ, Du XJ, Xu CF, Sun CY, Wang HX, Cao ZT, Yang XZ, Zhu YH, Nie SM, Wang J (2016) Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci USA 113(15):4164–4169

    Article  CAS  Google Scholar 

  167. Sun HL, Guo BN, Li XQ, Cheng R, Meng FH, Liu HY, Zhong ZY (2010) Shell-sheddable micelles based on dextran-SS-Poly(epsilon-caprolactone) Diblock copolymer for efficient intracellular release of doxorubicin. Biomacromol 11(4):848–854

    Article  CAS  Google Scholar 

  168. Zhong YN, Yang WJ, Sun HL, Cheng R, Meng FH, Deng C, Zhong ZY (2013) Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells. Biomacromol 14(10):3723–3730

    Article  CAS  Google Scholar 

  169. Zhu YQ, Zhang J, Meng FH, Deng C, Cheng R, Jan FJ, Zhong ZY (2016) cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J Control Release 233:29–38

    Article  CAS  Google Scholar 

  170. Wang XX, Zhang J, Cheng R, Meng FH, Deng C, Zhong ZY (2016) Facile synthesis of reductively degradable biopolymers using cystamine diisocyanate as a coupling agent. Biomacromol 17(3):882–890

    Article  CAS  Google Scholar 

  171. Chen W, Zhong P, Meng FH, Cheng R, Deng C, Feijen J, Zhong ZY (2013) Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J Control Release 169(3):171–179

    Article  CAS  Google Scholar 

  172. Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131(13):4830–4838

    Article  CAS  Google Scholar 

  173. Qiao Z-Y, Zhang R, Du FS, Liang DH, Li ZC (2011) Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release 152(1):57–66

    Article  CAS  Google Scholar 

  174. Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: Synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129(18):5939–5945

    Article  CAS  Google Scholar 

  175. Oh JK, Tang CB, Gao HF, Tsarevsky NV, Matyjaszewski K (2006) Inverse miniemulsion ATRP: A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. J Am Chem Soc 128(16):5578–5584

    Article  CAS  Google Scholar 

  176. Ja-Hyoung Ryu RTC, Siriporn Jiwpanich, Sean Bickerton, R. Prakash Babu, S. Thayumanavan (2010) Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J Am Chem Soc 132:17227–17235

    Article  CAS  Google Scholar 

  177. Dai J, Lin SD, Cheng D, Zou SY, Shuai XT (2011) Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew Chem Int Ed 50(40):9404–9408

    Article  CAS  Google Scholar 

  178. Chen W, Zheng M, Meng FH, Cheng R, Deng C, Feijen J, Zhong ZY (2013) In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromol 14(4):1214–1222

    Article  CAS  Google Scholar 

  179. Wu LL, Zou Y, Deng C, Cheng R, Meng FH, Zhong ZY (2013) Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials 34(21):5262–5272

    Article  CAS  Google Scholar 

  180. Chen W, Meng FH, Cheng R, Deng C, Feijen J, Zhong Z (2015) Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Control Release 210:125–133

    Article  CAS  Google Scholar 

  181. MacKay CE, Knock GA (2015) Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease. J Physiol London 593(17):3815–3828

    Article  CAS  Google Scholar 

  182. Panieri E, Santoro MM (2015) ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 72(17):3281–3303

    Article  CAS  Google Scholar 

  183. Burgoyne JR, S-i Oka, Ale-Agha N, Eaton P (2012) Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. Antioxid Redox Signal 18(9):1042–1052

    Article  CAS  Google Scholar 

  184. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40(9):4783–4804

    Article  CAS  Google Scholar 

  185. Xu Q, He C, Xiao C, Chen X (2016) Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol Biosci 16(5):635–646

    Article  CAS  Google Scholar 

  186. Joshi-Barr S, de Gracia Lux C, Mahmoud E, Almutairi A (2013) Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxid Redox Signal 21(5):730–754

    Article  CAS  Google Scholar 

  187. Li X, Makarov SS (2006) An essential role of NF-κB in the “tumor-like” phenotype of arthritic synoviocytes. Proc Natl Acad Sci USA 103(46):17432–17437

    Article  CAS  Google Scholar 

  188. Schäfer M, Werner S (2008) Oxidative stress in normal and impaired wound repair. Pharmacol Res 58(2):165–171

    Article  CAS  Google Scholar 

  189. Napoli A, Valentini M, Tirelli N, Muller M, Hubbell JA (2004) Oxidation-responsive polymeric vesicles. Nat Mater 3(3):183–189

    Article  CAS  Google Scholar 

  190. Liu B, Wang D, Liu Y, Zhang Q, Meng L, Chi H, Shi J, Li G, Li J, Zhu X (2015) Hydrogen peroxide-responsive anticancer hyperbranched polymer micelles for enhanced cell apoptosis. Polym Chem 6(18):3460–3471

    Article  CAS  Google Scholar 

  191. Gupta MK, Meyer TA, Nelson CE, Duvall CL (2012) Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release 162(3):591–598

    Article  CAS  Google Scholar 

  192. Poole KM, Nelson CE, Joshi RV, Martin JR, Gupta MK, Haws SC, Kavanaugh TE, Skala MC, Duvall CL (2015) ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials 41:166–175

    Article  CAS  Google Scholar 

  193. Qiao Z-Y, Zhao W-J, Cong Y, Zhang D, Hu Z, Duan Z-Y, Wang H (2016) Self-assembled ros-sensitive polymer-peptide therapeutics incorporating built-in reporters for evaluation of treatment efficacy. Biomacromol 17(5):1643–1652

    Article  CAS  Google Scholar 

  194. Xiao C, Ding J, Ma L, Yang C, Zhuang X, Chen X (2015) Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polym Chem 6(5):738–747

    Article  CAS  Google Scholar 

  195. Zhao WJ, Qiao Z-Y, Duan ZY, Wang H (2016) Synthesis and self-assembly of pH and ROS dual responsive Poly(beta-thioester)s. Acta Chim Sinica 74(3):234–240

    Article  CAS  Google Scholar 

  196. Xu H, Cao W, Zhang X (2013) Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res 46(7):1647–1658

    Article  CAS  Google Scholar 

  197. Ma N, Li Y, Ren H, Xu H, Li Z, Zhang X (2010) Selenium-containing block copolymers and their oxidation-responsive aggregates. Polym Chem 1(10):1609–1614

    Article  CAS  Google Scholar 

  198. Cao W, Li Y, Yi Y, Ji S, Zeng L, Sun Z, Xu H (2012) Coordination-responsive selenium-containing polymer micelles for controlled drug release. Chem Sci 3(12):3403–3408

    Article  CAS  Google Scholar 

  199. Liu J, Pang Y, Zhu Z, Wang D, Li C, Huang W, Zhu X, Yan D (2013) Therapeutic nanocarriers with hydrogen peroxide-triggered drug release for cancer treatment. Biomacromol 14(5):1627–1636

    Article  CAS  Google Scholar 

  200. Ma N, Li Y, Xu H, Wang Z, Zhang X (2010) Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 132(2):442–443

    Article  CAS  Google Scholar 

  201. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(1–2):278–301

    Article  CAS  Google Scholar 

  202. Broaders KE, Grandhe S, Fréchet JMJ (2011) A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc 133(4):756–758

    Article  CAS  Google Scholar 

  203. Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q (2014) Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Ed 53(49):13444–13448

    Article  CAS  Google Scholar 

  204. Deng Z, Qian Y, Yu Y, Liu G, Hu J, Zhang G, Liu S (2016) Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J Am Chem Soc

    Article  CAS  Google Scholar 

  205. Zhang M, Song C-C, Ji R, Qiao Z-Y, Yang C, Qiu F-Y, Liang D-H, Du F-S, Li Z-C (2016) Oxidation and temperature dual responsive polymers based on phenylboronic acid and N-isopropylacrylamide motifs. Polym Chem 7(7):1494–1504

    Article  CAS  Google Scholar 

  206. Nicolaou KC, Mathison CJN, Montagnon T (2003) New reactions of IBX: oxidation of nitrogen- and sulfur-containing substrates to afford useful synthetic intermediates. Angew Chem Int Ed 42(34):4077–4082

    Article  CAS  Google Scholar 

  207. Shim MS, Xia Y (2013) A Reactive Oxygen Species (ROS)-Responsive Polymer for Safe, Efficient, and Targeted Gene Delivery in Cancer Cells. Angew Chem Int Ed 52(27):6926–6929

    Article  CAS  Google Scholar 

  208. Yuan YY, Liu J, Liu B (2014) Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew Chem Int Ed 53(28):7163–7168

    Article  CAS  Google Scholar 

  209. Rauhut MM (1969) Chemiluminescence from concerted peroxide decomposition reactions. Acc Chem Res 2(3):80–87

    Article  CAS  Google Scholar 

  210. Rauhut MM, Bollyky LJ, Roberts BG, Loy M, Whitman RH, Iannotta AV, Semsel AM, Clarke RA (1967) Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds. J Am Chem Soc 89(25):6515–6522

    Article  CAS  Google Scholar 

  211. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, Taylor WR, Murthy N (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles, vol 6, 10

    Article  CAS  Google Scholar 

  212. de Gracia Lux C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A (2012) Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J Am Chem Soc 134(38):15758–15764

    Article  CAS  Google Scholar 

  213. Shuhendler AJ, Pu K, Cui L, Uetrecht JP, Rao J (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotech 32(4):373–380

    Article  CAS  Google Scholar 

  214. Lee Y-D, Lim C-K, Singh A, Koh J, Kim J, Kwon IC, Kim S (2012) Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide. ACS Nano 6(8):6759–6766

    Article  CAS  Google Scholar 

  215. Lee D, Bae S, Hong D, Lim H, Yoon JH, Hwang O, Park S, Ke Q, Khang G, Kang PM (2013) H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents. Sci Rep 3:2233

    Article  Google Scholar 

  216. Lee SH, Boire TC, Lee JB, Gupta MK, Zachman AL, Rath R, Sung H-J (2014) ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response. J Mat Chem B 2(41):7109–7113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Ying Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiao, ZY., Gao, YJ. (2018). Acid- and Redox-Responsive Smart Polymeric Nanomaterials for Controlled Drug Delivery. In: Wang, H., Li, LL. (eds) In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6913-0_5

Download citation

Publish with us

Policies and ethics