Skip to main content

Advertisement

Log in

Doxorubicin Loaded pH-sensitive Micelle: Antitumoral Efficacy against Ovarian A2780/DOXR Tumor

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate pH-sensitive mixed micelles for multidrug resistant (MDR) ovarian tumor targeting and optical imaging of solid tumors.

Method

Doxorubicin (DOX) encapsulated pH-sensitive mixed micelles composed of poly(l-histidine)(MW 5K)-b-PEG(MW 2K) and poly(l-lactic acid)(3K)-b-PEG (2K)-folate (PHSM-f) were prepared. Folate receptor-mediated endocytosis, drug uptake, endosomal disruption and cell viability were investigated at the cellular level. For in vivo tumor growth inhibition tests, multidrug resistant ovarian A2780/DOXR xenografted nude mice were used. Optical imaging was performed by using a Cy5.5 fluorescence dye-labeled mixed micelle system. Cy5.5 fluorescence intensity at the tumor site was measured in KB epidermoid xenografted nude mice.

Results

In vitro cell viability and drug distribution in the cytoplasm demonstrated the significantly superior efficacy of PHSM-f to free DOX and a control sample of DOX loaded pH-insensitive micelle composed of poly(l-lactic acid)(3K)-b-PEG(2K)/poly(l-lactic acid)(3K)-b-PEG(2K)-folate (80/20 wt/wt%) (PHIM-f). The mechanisms of these results were proved by folate receptor mediated endocytosis of micelle and endosomal disruption function by it. In addition, the optical imaging demonstrated the future application of the diagnositic area. PHSM-f inhibited the growth of multidrug resistant ovarian tumors efficiently in mice, with minimum weight loss.

Conclusions

The pH-sensitive mixed micelle system demonstrates effective antitumor efficacy against the multidrug resistant ovarian tumor A2780/DOXR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. L. Brannon-Peppas, and J. O. Blanchette. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56:1649–1659 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. G. Szakacs, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5:219–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. R. Duncan. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs. 3:175–210 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. V. P. Torchilin. Liposomes as targetable drug carriers. Crit. Rev. Ther. Drug Carr. Syst. 1:65–115 (1985).

    Google Scholar 

  5. M. Jones, and J. Leroux. Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48:101–111 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. G. S. Kwon, and K. Kataoka. Block copolymer micelles as long circulating drug vehicles. Adv. Drug Deliv. Rev. 16:295–309 (1995).

    Article  CAS  Google Scholar 

  7. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54:135–147 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. H. Okada, and H. Toguchi. Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 12:1–99 (1995).

    CAS  Google Scholar 

  9. G. P. Carino, J. S. Jacob, and E. Mathiowitz. Nanosphere based oral insulin delivery. J. Control. Release. 65:261–269 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. H. Maeda. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. A. K. Larsen, A. E. Escargueil, and A. Skladanowski. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 88:217–229 (2000).

    Article  Google Scholar 

  12. S. Bennis, C. Chapey, P. Couvreur, and J. Robert. Enhanced cytotoxicity of doxorubicin encapsulated in polyhexylcyanoacrylate nanospheres against multi-drug-resistant tumor cells in culture. Eur. J. Cancer A. 30:89–93 (1994).

    Article  Google Scholar 

  13. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, and T. Okano. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J. Control. Release. 48:157–164 (1997).

    Article  CAS  Google Scholar 

  14. J. E. Chung, M. Yokoyama, and T. Okano. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Release. 65:93–103 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. J. Kopecek, P. Kopeckova, T. Minko, and Z. Lu. HPMA copolymer—anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 50:61–81 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. D. Putnam, and J. Kopecek. Enantioselective Release of 5-Fluorouracil from N-(2-Hydroxypropyl) methacrylamide-Based Copolymers via Lysosomal Enzymes. Bioconjug. Chem. 6:483–492 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. E. S. Lee, K. Na, and Y. H. Bae. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release. 91:103–113 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. E. S. Lee, K. Na, and Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release. 103:405–418 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. E. S. Lee, K. Na, and Y. H. Bae. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5:325–329 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. E. R. Gillies, and J. M. Frechet. pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug. Chem. 16:361–368 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. D. C. Drummond, M. Zignani, and J. C. Leroux. Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid Res. 39:409–460 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. R. Duncan. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm. Sci. Technol. Today. 2:441–449 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. E. R. Gillies, T. B. Jonsson, and J. M. Frechet. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 126:11936–11943 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. R. Tomlinson, J. Heller, S. Brocchini, and R. Duncan. Polyacetal-doxorubicin conjugates designed for pH-dependent degradation. Bioconjug. Chem. 14:1096–1106 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. M. Hruby, C. Konak, and K. Ulbrich. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release. 103:137–148 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. Y. Bae, S. Fukushima, A. Harada, and K. Kataoka. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. Eng. 42:4640–4643 (2003).

    Article  CAS  Google Scholar 

  27. S. D. Kong, A. Luong, G. Manorek, S. B. Howell, and J. Yang. Acidic hydrolysis of N-ethoxybenzylimidazoles (NEBIs): potential applications as pH-sensitive linkers for drug delivery. Bioconjug. Chem. 18:293–296 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. S. M. Hahn, A. Russo, J. A. Cook, and J. B. Mitchell. A multidrug-resistant breast cancer line induced by weekly exposure to doxorubicin. Int. J. Oncol. 14:273–279 (1999).

    PubMed  CAS  Google Scholar 

  29. H. Yin, E. S. Lee, D. Kim, K. H. Lee, K. T. Oh, and Y. H. Bae. Physicochemical characteristics of pH-sensitive poly(L-Histidine)-b-poly(ethylene glycol)/poly(L-Lactide)-b-poly(ethylene glycol) mixed micelles. J. Control. Release. 126:130–138 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. E. S. Lee, H. J. Shin, K. Na, and Y. H. Bae. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J. Control. Release. 90:363–374 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. Z. G. Gao, H. D. Fain, and N. Rapport. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol. Pharmacol. 1:317–330 (2004).

    Article  CAS  Google Scholar 

  32. K. Park, J. H. Kim, Y. S. Nam, S. Lee, H. Y. Nam, K. Kim, J. H. Park, I. S. Kim, K. Choi, S. Y. Kim, and I. C. Kwon. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J. Control. Release. 122:305–314 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Z. G. Gao, H. D. Fain, and N. Rapport. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J. Control. Release. 102:203–222 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. E. C. Spoelstra, H. Dekker, G. J. Schuurhuis, H. J. Broxterman, and J. Lankelma. P-glycoprotein drug efflux pump involved in the mechanisms of intrinsic drug resistance in various colon cancer cell lines: evidence for a saturation of active daunorubicin transport. Biochem. Pharmacol. 41:349–359 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. Y. Lu, and P. S. Low. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J. Control. Release. 91:17–29 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Y. Lu, and P. S. Low. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54:675–693 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. G. Mohajer, E. S. Lee, and Y. H. Bae. Enhanced intracellular retention activity of novel pH-sensitive polymeric micelles in wild and multidrug resistant MCF-7 cells. Pharm. Res. 24:1618–1627 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. R. A. Jones, C. Y. Cheung, F. E. Black, J. K. Zia, P. S. Stayton, A. S. Hoffman, and M. R. Wilson. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem. J. 372:65–75 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal, and M. J. Thun. Cancer statistics. CA Cancer J. Clin. 56:106–130 (2006).

    Article  PubMed  Google Scholar 

  40. S. A. Cannistra. Cancer of the ovary. N. Engl. J. Med. 351:2519–2529 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. A. du Bois, M. Quinn, T. Thigpen, J. Vermorken, E. Avall-Lundqvist, M. Bookman, D. Bowtell, M. Brady, A. Casado, A. Cervantes, E. Eisenhauer, M. Friedlaender, K. Fujiwara, S. Grenman, J. P. Guastalla, P. Harper, T. Hogberg, S. Kaye, H. Kitchener, G. Kristensen, R. Mannel, W. Meier, B. Miller, J. P. Neijt, A. Oza, R. Ozols, M. Parmar, S. Pecorelli, J. Pfisterer, A. Poveda, D. Provencher, E. Pujade-Lauraine, M. Randall, J. Rochon, G. Rustin, S. Sagae, F. Stehman, G. Stuart, E. Trimble, P. Vasey, I. Vergote, R. Verheijen, and U. Wagner. 2004 consensus statements on the management of ovarian cancer: final document of the 3rd International Gynecologic Cancer Intergroup Ovarian Cancer Consensus Conference (GCIG OCCC 2004). Ann. of Oncol. 16(Suppl. 8):viii7–viii12 (2005).

    Article  Google Scholar 

  42. W. P. McGuire III. Current status of taxane and platinum-based chemotherapy in ovarian cancer. J. Clin. Oncol. 21(May 15 Suppl):133s–135s (2003).

    Article  PubMed  Google Scholar 

  43. J. L. Wike-Hooley, J. Haveman, and J. S. Reinhold. The relevance of tumor pH to the treatment of malignant disease. Radiother. Oncol. 2:343–366 (1984).

    Article  PubMed  CAS  Google Scholar 

  44. S. H. Jang, M. G. Wientjes, and J. L. Au. Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: effect of treatment schedule. J. Pharmacol. Exp. Ther. 296:1035–1042 (2001).

    PubMed  CAS  Google Scholar 

  45. S. H. Jang, M. G. Wientjes, D. Lu, and J. L. Au. Drug delivery and transport to solid tumors. Pharm. Res. 20:1337–1350 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. A. Haidemenos, D. Kontis, A. Gazi, E. Kallai, M. Allin, and B. Lucia. Plasma homocysteine, folate and B12 in chronic schizophrenia. Prog. Neuro-psychopharmacol. Biol. Psychiatry. 31:1289–1296 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by NIH CA 101850. Drs. Zhonggao Gao, Kyung Taek Oh, and Han Chang Kang are acknowledged for their help with various experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Han Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Lee, E.S., Park, K. et al. Doxorubicin Loaded pH-sensitive Micelle: Antitumoral Efficacy against Ovarian A2780/DOXR Tumor. Pharm Res 25, 2074–2082 (2008). https://doi.org/10.1007/s11095-008-9603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9603-6

KEY WORDS

Navigation