Skip to main content

Hemorheology Based Traffic Congestion and Forecasting Model in the Internet of Vehicles

  • Conference paper
  • First Online:
Modeling, Design and Simulation of Systems (AsiaSim 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 751))

Included in the following conference series:

Abstract

Traffic congestion causes increased vehicular queuing, slower speeds and delay in travel time, continuously claiming many social, economic and environmental problems. While Internet of Vehicles (IoV) advances in equipping vehicles with sensors and actuators that ‘communicates’, classifying and forecasting traffic congestion in real-time and in fast mobility is a sizzling yet challenging research interest. In hemorheology, hypertension can be classified in stages to indicate severity levels, thus a similar analogy need to be tested in traffic to classify congestion levels. This paper attempts to develop a traffic congestion and forecasting model based on hypertension in hemorheology. Traffic congestion was simulated in the city of Shah Alam’s urban area using SUMO urban vehicular mobility simulator. Results show promising and rational adaptation of hemorheology in classifying the severity levels of traffic congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gil Sander, F., Blancas Mendivil, L.C., Westra, R.: Malaysia economic monitor: tranforming urban transport, pp. 1–82 (2015)

    Google Scholar 

  2. Darbha, S., Rajagopal, K.R., Tyagi, V.: A review of mathematical models for the flow of traffic and some recent results. Nonlinear Anal Theory Methods Appl. 69, 950–970 (2008). doi:10.1016/j.na.2008.02.123

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonzani, I., Gramani Cumin, L.M.: Critical analysis and perspectives on the hydrodynamic approach for the mathematical theory of vehicular traffic. Math. Comput. Model. 50, 526–541 (2009). doi:10.1016/j.mcm.2009.03.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Van Wageningen-kessels, F.: Multi-class continuum traffic flow models: analysis and simulation methods. Delft University of Technology (2013). doi:10.4233/uuid:163507af-96df-4804-ad19-2147921b6cb

  5. Hoogendoorn, S., Knoop, V.: Traffic flow theory and modelling. Transportation. System and Transport Policy An Introduction, pp. 125–159 (2012)

    Google Scholar 

  6. Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer, Heidelberg (2013). doi:10.1007/978-3-642-32460-4

    Book  MATH  Google Scholar 

  7. Jia, D., Ngoduy, D.: Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication 90, 172–191 (2016) 10.1016/j.trb.2016.03.008

  8. Horng, G.J.: The adaptive recommendation segment mechanism to reduce traffic congestion in smart city. In: Proceedings of - 2014 10th International Conference on Intelligent Information Hiding Multimedia Signal Processing IIH-MSP, pp. 155–158 (2014). doi:10.1109/IIH-MSP.2014.45

  9. Cárdenas-benítez, N., Aquino-santos, R., Magaña-espinoza, P.: Traffic congestion detection system through connected vehicles and big data (2016). doi:10.3390/s16050599

  10. Wongdeethai, S., Siripongwutikorn, P.: Collecting road traffic information using vehicular ad hoc networks. EURASIP J. Wirel. Commun. Netw. (2016). doi:10.1186/s13638-015-0513-0

    Google Scholar 

  11. Meneguette, R.I., Filho, G.P.R., Guidoni, D.L., Pessin, G.: Increasing intelligence in inter-vehicle communications to reduce traffic congestions : experiments in urban and highway environments, 1–25 (2016). doi:10.1371/journal.pone.0159110

  12. Meng, J., Qian, Y., Dai, S.: Modeling of urban traffic networks with lattice Boltzmann model. EPL (Europhys. Lett.) 81, 44003 (2008). doi:10.1209/0295-5075/81/44003

    Article  MathSciNet  Google Scholar 

  13. Piccoli, B., Tosin, A.: A review of continuum mathematical models of vehicular traffic (2000)

    Google Scholar 

  14. Deshmukh, S.M.: Designing an optimized smart device. In: Vehicle For Detection and Avoidance of Traffic Congestion, pp. 33–36 (2016)

    Google Scholar 

  15. Wang, S., Djahel, S., Zhang, Z., McManis, J.: Next road rerouting: a multiagent system for mitigating unexpected urban traffic congestion. IEEE Trans. Intell. Transp. Syst. 17, 2888–2899 (2016). doi:10.1109/TITS.2016.2531425

    Article  Google Scholar 

  16. Baskurt, O.K., Meiselman, H.J.: Hemorheology and hemodynamics. Med. Health Sci. III, 285 (2010)

    Google Scholar 

  17. Fedosov, D.A., Noguchi, H., Gompper, G.: Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol. 13, 239–258 (2014). doi:10.1007/s10237-013-0497-9

    Article  Google Scholar 

  18. Center for Disease Control: High blood pressure. Sci. Am. 179, 44–47 (1948)

    Google Scholar 

  19. Bighamian, R., Hahn, J.-O.: Relationship between stroke volume and pulse pressure during blood volume perturbation: a mathematical analysis. Biomed. Res. Int. 2014, 1–10 (2014). doi:10.1155/2014/459269

    Article  Google Scholar 

  20. Understanding and Managing High Blood Pressure (2014)

    Google Scholar 

  21. Holmes, M.H.: Introduction to the foundations of applied mathematics (2009). doi:10.1007/978-0-387-87765-5

  22. Sankar, D.S., Hemalatha, K.: A non-Newtonian fluid flow model for blood flow through a catheterized artery—Steady flow. Appl. Math. Model. 31, 1847–1864 (2007). doi:10.1016/j.apm.2006.06.009

    Article  MATH  Google Scholar 

  23. Berichte, P.: SUMO 2016 – Traffic, Mobility, and Logistics Berlin-Adlershof (2016)

    Google Scholar 

  24. Dkrajzew, N.: Sumo at a Glance. 1 (2014)

    Google Scholar 

  25. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent Development and Applications of {SUMO - Simulation of Urban MObility}. Int. J. Adv. Syst. Meas. 5, 128–138 (2012)

    Google Scholar 

  26. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., Meissner, S.: Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference Model. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40403-0. Enabling Things to Talk Des IoT Solut with IoT Archit Ref Model 1–349

    Book  Google Scholar 

  27. Bauza, R., Gozalvez, J.: Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle communications. J. Netw. Comput. Appl. 36, 1295–1307 (2013). doi:10.1016/j.jnca.2012.02.007

    Article  Google Scholar 

  28. Heba El-sersy, A.E.: A survey of traffic congestion detection using VANET. Commun. Appl. Electron. 1, 14–20 (2015)

    Article  Google Scholar 

  29. Ilarri, S., Delot, T., Trillo-Lado, R.: A data management perspective on vehicular networks. IEEE Commun. Surv. Tutorials 17, 2420–2460 (2015). doi:10.1109/COMST.2015.2472395

    Article  Google Scholar 

  30. Brennand, C.A.R.L., da Cunha, F.D., Maia, G., Cerqueira, E., Loureiro, A.A.F., Villas, L.A.: FOX : a traffic management system of computer-based vehicles FOG (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurshahrily Idura Ramli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ramli, N.I., Mohamed Rawi, M.I. (2017). Hemorheology Based Traffic Congestion and Forecasting Model in the Internet of Vehicles. In: Mohamed Ali, M., Wahid, H., Mohd Subha, N., Sahlan, S., Md. Yunus, M., Wahap, A. (eds) Modeling, Design and Simulation of Systems. AsiaSim 2017. Communications in Computer and Information Science, vol 751. Springer, Singapore. https://doi.org/10.1007/978-981-10-6463-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6463-0_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6462-3

  • Online ISBN: 978-981-10-6463-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics