Skip to main content

Cellulose Hydrogels; Fabrication, Properties, and Their Application to Biocompatible and Tissue Engineering

  • Chapter
  • First Online:
Hydrogels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Cellulose hydrogels made of agro-industrial bagasses of sugarcane and other are introduced in this chapter for the fabrication, properties, and their the biocompatible materials with cytocompatibility for tissue engineering. To obtain the cellulose hydrogels, firstly cellulose was regenerated from bagasse wastes by chemical pretreatments and bleaching. The renewable cellulose was converted to hydrogels by phase inversion process under ethanol vapor. To evaluate the biocompatibility, the hydrogel was implanted in the intraperitoneal of mice. The results were shown as small influence of the implanted hydrogel on the growth of mice. The implanted hydrogel was somewhat decreased in the molecular weight in 3–4 weeks, meaning biodegradable materials. However, the hydrogels kept enough mechanical strength in the living body. This indicated that the cellulose hydrogel regenerated waste bagasse showed acceptable biocompatibility and durability in the body. In addition, hydrogels are excellent in regeneration of cytocompatible property for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anyaporn B, Nakajima L, Kobayashi T (2017) Cellulose hydrogels nanocomposited silica and cellulose of cottonseed hulls. J Appl Polym Sci. https://doi.org/10.1002/app.44557

  • Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29:48–56

    Article  CAS  Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canilha L, de Cássia L, Brambilla RR, Fernandes Antunes FA, Chandel AK, dos Santos Milessi TS, das Graças Almeida Felipe M, da Silva SS (2013) Bioconversion of hemicellulose from sugarcane biomass into sustainable products (Chap. 2). In: Chandel AK, da Silva SS (eds) Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization

    Google Scholar 

  • Cao Y, Li H, Zhang Y, Zhang J, He J (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116:547–554

    Article  CAS  Google Scholar 

  • Cestelli Guidi M, Mirri C, Fratini E, Licursi V, Negri R, Marcelli A, Amendola R (2012) In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study. Anal Bioanal Chem 404:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, da Silva SS, Carvalho W, Singh Om V (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Article  CAS  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  • Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nanomaterials. Carbohydr Polym 91:7–13

    Article  CAS  PubMed  Google Scholar 

  • Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog. Polym Sci 53:86–168

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Gao H, Song J, Li Y, Zhang L, Cao X, Xu M, Cai J (2016) Tough and cell-compatible chitosan physical hydrogels for mouse bone mesenchymal stem cell in vitro. ACS Appl Mater Interfaces 8:19739–19746

    Article  CAS  PubMed  Google Scholar 

  • Elsabee MZ, Abdou ES (2013) Chitosan based edible film and coating: a review. Mater Sci Eng C 33:1819–1841

    Article  CAS  Google Scholar 

  • Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441

    Article  CAS  Google Scholar 

  • Forget A, Arya N, Randriantsilefisoa R, Miessmer F, Buck M, Ahmadi V, Jonas D, Blencowe A, Shastri VP (2016) Nonwoven carboxylated agarose-based fiber meshes with antimicrobial properties. Biomacromolecules 17:4021–4026

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Soto MJ, Jimenez-Isas H, Navarrete-Bolanos JL, Rico-Martinez R, Mirinda-Lopez R, Botello-Alvarez JE (2011) Kinetic study of the thermal hydrolysis of Agave salmiana for mescal production. J Agric Food Chem 59:7333–7340

    Article  CAS  PubMed  Google Scholar 

  • Giri TK, Thakur A, Alexander A, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2:439–449

    Article  CAS  Google Scholar 

  • Guo Y, Wu P (2008) Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydr Polym 74:509–513

    Article  CAS  Google Scholar 

  • Henniges U, Schiehser S, Rosenau T, Potthast A (2010) Cellulose solubility and analysis of problematic cellulose pulp in the solvent system DMAc/LiCl. ASC Symp Ser 1033:165–177

    CAS  Google Scholar 

  • Hofsetz K, Silva MA (2012) Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass Bioenerg 46:564–573

    Article  Google Scholar 

  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohyd Polym 90:1757–1763

    Article  CAS  Google Scholar 

  • Iñuguez-Covarrubias G, Lang SE, Rowel RM (2001) Utilization of by-products from the tequila industry. Part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol 77:25–32

    Article  Google Scholar 

  • Jiang H, Tovar-Carrillo K, Kobayashi T (2016) Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix. Ultrason Sonochem 32:398–406

    Article  CAS  PubMed  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:41719

    Article  CAS  Google Scholar 

  • Kestur SG, Flores-Sahgun THS, Dos Santos LP, Dos Santos J, Mazzaro I, Mikowski A (2013) Characterization of blue agave bagasse fibers of Mexico. Compos A 45:153–161

    Article  CAS  Google Scholar 

  • Kobayashi T (2015) Fabrication of cellulose hydrogels and characterization of their biocompatible films. In: Rahman A (ed) Studies in natural products chemistry, vol 45. Elsevier B.V., Amsterdam, pp 1–15

    Google Scholar 

  • Kobayashi T, Tovar-Carrillo K (2015) Fibroblast cell cultivation on wooden pulp cellulose hydrogels for cytocompatibility scaffold method. Pharm Anal Acta 6:423

    Article  CAS  Google Scholar 

  • Kobayashi T, Tovar-Carrillo KL, Nakasone K, Tagaya M (2014a) Biopolymer hydrogels regenerated from Agave tequilana waste for cytocompatable materials. IMRC Meet MRS Proc 1613:75–82

    Google Scholar 

  • Kobayashi T, Tovar-Carrillo K, Tagaya M (2014b) Biohydrogels interpenetrated with hydroxyethyl cellulose and wooden pulp for biocompatible materials. Ind Eng Chem Res 53:4650–4659

    Article  CAS  Google Scholar 

  • Kobayashi T, Tovar-Carrillo K, Tagaya M (2015) Bagasse sustainable polymers for cellulose hydrogel sheets showing tissue regeneration. In: Thakur VK, Thakur MK (eds) Handbook of sustainable polymers structure and chemistry. Pan Stanford Publishing Pte Ltd.

    Google Scholar 

  • Kometani N, Tanabe M, Su L, Yang K, Nishinari K (2015) Insitu observations of thermoreversible gelation and phase separation of agarose and methylcellulose solutions under high pressure. J Phys Chem B 119:6878–6883

    Article  CAS  PubMed  Google Scholar 

  • Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341

    Article  Google Scholar 

  • Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DY (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Ahn S, Kim GH (2012) Three-dimensional collagen/alginate hydrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration. Chem Mater 24:881–891

    Article  CAS  Google Scholar 

  • Li K, Kobayashi T (2016a) Ultrasound response of aqueous poly(ionic liquid) solution. Ultrason Sonochem 30:52–60

    Article  CAS  PubMed  Google Scholar 

  • Li K, Kobayashi T (2016b) FT-IR spectroscopy of ultrasound effect on aqueous imidazole ionic liquids having different counter ions. Ultrason Sonochem 28:39–46

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xiao W, Xiao K, Berti L, Luo J, Tseng HP, Fung G, Lam KS (2012) Well defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-Diols. Angew Chem Int Ed 124:2918–2923

    Article  Google Scholar 

  • Li K, Noguchi S, Kobayashi T (2016) Ultrasound-responsive behavior of gelatinous ionic liquid/poly(vinyl alcohol) composites. Ind Eng Chem Res 55:9915–9924

    Article  CAS  Google Scholar 

  • Linan-Montes A, de la Parra-Arciniega SM, Garza-Gonzalez MT, Garcia-Reyes RB, Soto-Regalado E, Cerino-Cordova FJ (2014) Characterization and thermal analysis of agave bagasse and malt spent grain. J Therm Anal Calorim 115:751–758

    Article  CAS  Google Scholar 

  • Liu X, Ma L, Mao Z, Gao C (2011) Chitosan-based biomaterials for tissue repair and regeneration. Adv Polym Sci 244:81–127

    Article  CAS  Google Scholar 

  • Lowe CJ, Reucroft IM, Grota MC, Shreiber DI (2016) Production of highly aligned collagen scaffolds by freeze-drying of self-assembled, fibrillar collagen gels. ACS Biomater Sci Eng 2:645–651

    Article  CAS  Google Scholar 

  • Macaya D, Ng KK, Spector M (2011) Injectable collagen-genipin gel for the treatment of spinal cord injury: in vitro studies. Adv Funct Mater 21:4788–4797

    Article  CAS  Google Scholar 

  • Madhumathi M, Sudheesh-Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813

    Article  CAS  PubMed  Google Scholar 

  • Mahadeva SK, Kim J (2011) Addition of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide to improve the thermal stability of regenerated cellulose. J Appl Polym Sci 121:750–755

    Article  CAS  Google Scholar 

  • Murillo-Alvarado PE, Santibanez-Aguilar JE, Ponce-Ortega JM, Castro-Montoya AJ, Serna-Gonzalez M, El-Haiwagi MM (2014) Optimization of the supply chain associated to the production of bioethanol from residues of agave from the tequila process in Mexico. Ind Eng Chem Res 53:5524–5538

    Article  CAS  Google Scholar 

  • Nakasone K, Kobayashi T (2016a) Effect of pre-treatment of sugarcane bagasse on the cellulose solution and application for the cellulose hydrogel films. Polym Adv Technol 27:973–980

    Article  CAS  Google Scholar 

  • Nakasone K, Kobayashi T (2016b) Cytocompatible cellulose hydrogels containing trace lignin. Mater Sci Eng C 64:269–277

    Article  CAS  Google Scholar 

  • Nakasone K, Ikematsu S, Kobayashi T (2016) Biocompatibility evaluation of cellulose hydrogel film regenerated from sugarcane bagasse waste and its in vivo behavior in mice. Ind Eng Chem Res 55:30–37

    Article  CAS  Google Scholar 

  • Nguyen MK, Alsberg E (2014) Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 39:1235–1265

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2:1003–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng N, Hu D, Zeng J, Li Y, Liang L, Chang C (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224

    Article  CAS  Google Scholar 

  • Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Article  Google Scholar 

  • Rao SS, Dejesus J, Short AR, Otero JJ, Sakar A, Winter JO (2013) Glioblastoma behavior in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl Mater Interfaces 5:9276–9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodell CB, Wade RJ, Purcell BP, Dusai NN, Burdick JA (2015) Selective proteolytic degradation of guest-host assembled, injectable hyaluronic acid hydrogels. ACS Biomater Sci Eng 1:277–286

    Article  CAS  Google Scholar 

  • Rojas OJ (2016) Cellulose chemistry and properties: fibers. Nanocellulose and advanced materials. Springer, Swizerland, pp 22–26

    Google Scholar 

  • Saucedo-Luna J, Castro-Montoya AJ, Campos-Garcia J, Rico JL (2010) Optimization of acid hydrolysis bagasse from Agave tequilana Weber. Rev Mex Ing Quim 9:91–97

    CAS  Google Scholar 

  • Shen X, Shamshina JL, Berton P, Bandomir J, Wang H, Gurau G, Rogers RD (2016) Comparison of hydrogels prepared with ionic liquid-isolated vs commercial chitin and cellulose. ACS Sustain Chem Eng 4:471–480

    Article  CAS  Google Scholar 

  • Sideris E, Griffin DR, Ding Y, Li S, Weaver WM, Carlo DD, Hsiai T, Segura T (2016) Particle hydrogels based on hyaluronic acid building blocks. ACS Biomater Sci Eng 2:2034–2041

    Article  CAS  Google Scholar 

  • Sjoholm E, Gustafsson K, Eriksson B, Brown W, Colmsjo A (2000) Aggregation of cellulose in lithium chloride/N,N-dimethylacetamide. Carbohydr Polym 41:153–159

    Article  CAS  Google Scholar 

  • Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90

    Article  CAS  Google Scholar 

  • Tchemtchoua VT, Atanasova G, Aqil A, Filee P, Garbacki N, Vanhooteghem O, Deroanne C, Noel A, Jerome C, Nushens B, Poumay Y, Colige A (2011) Development of a chitosan nanofibrillar schaford for skin repair and regeneration. Biomacromolecules 12:3194–3204

    Article  CAS  PubMed  Google Scholar 

  • Torres-Rendon JG, Kopf M, Gehlen D, Blaeser A, Fischer H, Laporte LD, Walter A (2016) Cellulose nanofibril hydrogel tubes as sacrificial templates for freestanding tubular cell constructs. Biomacromolecules 17:905–913

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Carrillo KL, Tagaya M, Kobayashi T (2013a) Bamboo fibers elaborating cellulose hydrogel films for medical applications. J Mater Sci Chem Eng 1:7–12

    CAS  Google Scholar 

  • Tovar-Carrillo K, Sugita SS, Tagaya M, Kobayashi T (2013b) Fibroblast compatibility on scaffold hydrogels prepared from Agave tequilana Webber bagasse for tissue regeneration. Ind Eng Chem Res 52:11607–11613

    Article  CAS  Google Scholar 

  • Tovar-Carrillo KL, Tagaya M, Kobayashi T (2014) Effects of sodium hypochlorite on A. tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films. Mater Sci Eng C 42:808–815

    Article  CAS  Google Scholar 

  • Tovar-Carrillo KL, Tamayo G, Donohue A, Kobayashi T, Saucedo RA (2015) Obtaining of hydrogels using PVA and HEC for adipose tissue regeneration. J Tissue Sci Eng 6:152

    Google Scholar 

  • Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, Persson C, Griffith M, Mihranyan A (2016) ACS Biomater Sci Eng 2:2072–2079

    Article  CAS  Google Scholar 

  • Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Biores Technol 102:7119–7123

    Article  CAS  Google Scholar 

  • Venegas-Sanchez JA, Tagaya M, Kobayashi T (2013a) Ultrasound effect used as external stimulus for viscosity change of aqueous carrageenans. Ultrason Sonochem 20:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Venegas-Sanchez JA, Tagaya M, Kobayashi T (2013b) Effect of ultrasound on the aqueous viscosity of several water-soluble polymers. Polym J 45:1–9

    Article  CAS  Google Scholar 

  • Venegas-Sanchez JA, Tagaya M, Kobayashi T (2014) Ultrasound stimulus inducing change in hydrogen bonded crosslinking of aqueous polyvinyl alcohols. Ultrason Sonochem 21:295–309

    Article  CAS  PubMed  Google Scholar 

  • Xiong R, Hameed N, Guo Q (2012) Cellulose/polycaprolactone blends regenerated from ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 90:575–582

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Liu C, Zhuo R, Cheng S (2012) Alginate/Caco3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol. Pharmaceutics 9:2887–2893

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaomi Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobayashi, T. (2018). Cellulose Hydrogels; Fabrication, Properties, and Their Application to Biocompatible and Tissue Engineering. In: Thakur, V., Thakur, M. (eds) Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6077-9_11

Download citation

Publish with us

Policies and ethics