Recent Advancement in Diagnosis of Begomoviruses

  • Saurabh Verma
  • Sangeeta Saxena


The diagnostics techniques are required for the detection of disease-causing organisms in plants. It is necessary for these techniques to be easy, specific, and efficient in virus detection at early or late stages of the disease. The timely and efficient detection of these viruses is essential in the control of diseases and in farm management practices. The diagnostics has evolved from simple symptomatic detection to the level where the disease-causing organisms are detected in non-symptomatic plants also that act as a reservoir for Begomovirus during unfavorable season. This chapter will give an update about the status of the established techniques for virus detection and recent advances in virus diagnostics. The techniques discussed here are available for effective farm management of the viral diseases caused by Begomovirus and other associated genera of geminivirus.


Begomovirus ELISA qRT-PCR RCA LAMP Genomics 


  1. Abou-Jawdah Y, Sobh H, Cordahi N et al (2004) Immunodiagnosis of prune dwarf virus using antiserum produced to its recombinant coat protein. J Virol Methods 121:31–38CrossRefPubMedGoogle Scholar
  2. Abu-Samah N, Randles JW (1981) A comparison of the nucleotide sequence homologies of three isolates of bean yellow mosaic virus and their relationship to other potyviruses. Virol LLO:436–444Google Scholar
  3. Adkins S, Webb SE, Baker CA, Baker CA, Kousik CS (2008) Squash vein yellowing virus detection using nested polymerase chain reaction demonstrates that the cucurbit weed Momordica charantia is a reservoir host. Plant Dis 92:1119–1123CrossRefGoogle Scholar
  4. Agindotan BO, Shiel PJ, Berger PH (2007) Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. J Virol Methods 142(1–2):1–9CrossRefPubMedGoogle Scholar
  5. Alberter B, Rezaian AM, Jeske H (2005) Replicative intermediates of ToLCV and its satellite DNAs. Virology 331:441–448CrossRefPubMedGoogle Scholar
  6. Baker CA, Lecoq H, Purcifull DE (1991) Serological and biological variability among papaya ringspot virus type-W isolates in Florida. Phytopathology 81(7):722–728CrossRefGoogle Scholar
  7. Banttari EE, Goodwin PH (1985) Detection of potato viruses S, X, and Y by enzyme linked immunosorbent assay on nitrocellulose membranes (dot-ELISA). Plant Dis 69(3):202–205CrossRefGoogle Scholar
  8. Bariana HS, Shannon AL, Chu PWG, Waterhouse PM (1994) Detection of five seed-borne legume viruses in one sensitive multiplex polymerase chain reaction test. Phytopathology 84:1201–1205CrossRefGoogle Scholar
  9. Bertolini E, Olmos A, Martínez MC et al (2001) Single-step multiplex RT-PCR for simultaneous and colorimetric detection of six RNA viruses in olive trees. J Virol Methods 96:33–41CrossRefPubMedGoogle Scholar
  10. Boonham N, Kreuze J, Winter S et al (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res I 186:20–31CrossRefGoogle Scholar
  11. Briddon RW, Markham PG (1994) Universal primers for the PCR amplification of dicot-infecting geminiviruses. Mol Biotechnol 1:7–20CrossRefGoogle Scholar
  12. Briddon RW, Bull SE, Amin I et al (2003) Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121CrossRefPubMedGoogle Scholar
  13. Briddon RW, Bull SE, Amin I et al (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 324:462–474CrossRefPubMedGoogle Scholar
  14. Briddon RW, Brown JK, Moriones E et al (2008) Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Arch Virol 153:763–781CrossRefPubMedGoogle Scholar
  15. Burnette WN (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate—polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203CrossRefPubMedGoogle Scholar
  16. Cann A (2011) Principles of molecular virology, 5th edn. Academic, London. isbn:978-0123849397Google Scholar
  17. Cating RA, Funke CN, Kaur N et al (2015) A multiplex reverse transcription (RT) high-fidelity PCR protocol for the simultaneous detection of six viruses that cause potato tuber necrosis. Am J Potato Res 92:536–540. doi: 10.1007/s12230–015-9457-5 CrossRefGoogle Scholar
  18. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92CrossRefPubMedGoogle Scholar
  19. Cooper HM, Patterson Y (2008) Chapter 2, Section II, Unit 2.4: Production of polyclonal antisera. In: Current protocols in immunology (Suppl. Vol. 82, pp. 2.4.1–2.4.10). Wiley Online Library. ISBN: 9780471142737. doi: 10.1002/0471142735
  20. Crowther JR (2000) The ELISA guidebook: methods in molecular biology, vol 149. Humana Press, TotowaCrossRefGoogle Scholar
  21. Dai J, Cheng J, Huang T et al (2012) A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants. J Virol Methods 183:57–62CrossRefPubMedGoogle Scholar
  22. Dasgupta I, Das BK, Nath PS et al (1996) Detection of rice tungro bacilliformvirus in field and glasshouse samples from India using the polymerase chain reaction. J Virol Methods 58:53–58CrossRefPubMedGoogle Scholar
  23. Dekker EL, Dore I, Porta C, Van Regenmortel MHV (1987) Conformational specificity of monoclonal–antibodies used in the diagnosis of tomato mosaic virus. Arch Virol 94:191–203CrossRefPubMedGoogle Scholar
  24. Desbiez C, Costa C, Wipf-Scheibel C et al (2007) Serological and molecular variability of watermelon mosaic virus (genus Potyvirus). Arch Virol 152(4):775–781CrossRefPubMedGoogle Scholar
  25. EPPO (2004a) Diagnostic protocol for regulated pests. Citrus tristeza virus. OEPP/EPPO Bull 34:239–246CrossRefGoogle Scholar
  26. EPPO (2004b) Diagnostic protocol for regulated pests. Plum pox potyvirus. OEPP/EPPO Bull 34:155–157CrossRefGoogle Scholar
  27. EPPO (2005) Diagnostic protocol for regulated pests. Tomato ringspot nepovirus. OEPP/EPPO Bull 35:271–273CrossRefGoogle Scholar
  28. Ferreira PTO, Lemosa TO, Nagata T, Inoue-Nagata AK (2008) One-step cloning approach for construction of agroinfectious begomovirus clones. J Virol Methods 147:351–354CrossRefGoogle Scholar
  29. Gambino G, Gribaudo I (2006) Simultaneous detection of nine grapevine viruses by multiplex reverse transcription-polymerase chain reaction with coamplification of a plant RNA as internal control. Virology 96(11):1223–1229Google Scholar
  30. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  31. Haible D, Kober S, Jeske D (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16CrossRefPubMedGoogle Scholar
  32. Halgren A, Tzanetakis IE, Martin RR (2007) Identification, characterization and detection of black raspberry necrosis virus. Phytopathology 97:44–50CrossRefPubMedGoogle Scholar
  33. Hallan V, Saxena S, Singh BP (1998a) Ageratum, Croton and Malvastrum harbor geminiviruses: evidence through PCR amplification. World J Microbiol Biotechnol 11(1):74Google Scholar
  34. Hallan V, Saxena S, Singh BP (1998b) Yellow net of Triumfetta is caused by a Geminivirus: a first report. Plant Dis 82(1):127CrossRefGoogle Scholar
  35. Hampton RO, Ball EM, DeBoer SH (1990) Serological methods for detection and identification of viral and bacterial plant pathogens: a laboratory manual. APS, St. PaulGoogle Scholar
  36. Heide M, Lange L (1988) Detection of potato leafroll virus and potato viruses M, S, X, and Y by dot immunobinding on plain paper. Potato Res 31(2):367–373CrossRefGoogle Scholar
  37. Hornbeck P, Winston SE, Fuller SA (2001) Chapter 11, section I, unit 11.2: Enzyme–Linked Immunosorbent Assays (ELISA). In: FM Ausubel, R Brent, RE Kingston, DD Moore, JG Seideman, JA Smith, K. Struhl (eds) Current Protocols in Molecular Biology, vol 15. Academic, 11.2.1–11.2.22Google Scholar
  38. Hull R (2014) Matthews’ plant virology. Academic, New York. isbn:978–0123611604Google Scholar
  39. Hyun JW, Yi SH, MacKenzie SJ et al (2009) Pathotypes and genetic relationship of worldwide collections of Elsinoe spp. causing scab diseases of citrus. Phytopathology 99(6):721–728CrossRefPubMedGoogle Scholar
  40. Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T (2004) A simple method for cloning the complete begomovirus genome using the bacteriophage Φ29 DNA polymerase. J Virol Methods 116:209–211CrossRefPubMedGoogle Scholar
  41. James D (1999) A simple and reliable protocol for the detection of apple stem grooving virus by RT-PCR and in a multiplex PCR assay. J Virol Methods 83:1–9CrossRefPubMedGoogle Scholar
  42. Ju HJ (2011) Simple and rapid detection of potato leafroll virus (PLRV) by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Plant Pathol J 27:1–4CrossRefGoogle Scholar
  43. Kogovšek P, Gow L, Pompe-Novak M et al (2008) Single-step RT real-time PCR for sensitive detection and discrimination of potato virus Y isolates. J Virol Methods 149(1):1–11CrossRefPubMedGoogle Scholar
  44. Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive- strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430CrossRefPubMedGoogle Scholar
  45. Kuan CP, Wu MT, Lu YL, Huang HC (2010) Rapid detection of squash leaf curl virus by loop-mediated isothermal amplification. J Virol Methods 169(1):61–65. doi: 10.1016/j.jviromet.2010.0 6.017. Epub 2010 Jul 13CrossRefPubMedGoogle Scholar
  46. Kwon JY, Hong JS, Kim MJ et al (2014) Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses. J Virol Methods 206:133–139CrossRefPubMedGoogle Scholar
  47. Lee S, Kang EH, Shin YG, Lee SH (2013) Development of RT-PCR and nested PCR for detecting four quarantine plant viruses belonging to Nepovirus. Res Plant Dis 19:220–225CrossRefGoogle Scholar
  48. Leone G, van Schijndel HB, van Genien B, Schoen CD (1997) Direct detection of potato leafroll virus in potato tubers by immunocapture and the isothermal nucleic acid amplification method NASBA. J Virol Methods 66(1):19–27CrossRefPubMedGoogle Scholar
  49. López MM, Bertolini E, Olmos A et al (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiology 6:233–243CrossRefGoogle Scholar
  50. Lozano G, Trenado HP, Fiallo-Olivé E et al (2016) Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae) – definition of a distinct class of begomovirus-associated satellites. Front Microbiol 7:162. doi: 10.3389/fmicb.2016.00 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Makkouk KM, Kumari SG (2002) Low-cost paper can be used in tissue-blot immunoassay for detection of cereal and legume viruses. Phytopathol Mediterr 41(3):275–278Google Scholar
  52. Mandandi KK, Scholthof KBG (2013) Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25:1489–1505CrossRefGoogle Scholar
  53. Mishra M, Chandra R, Saxena S (2007) Chapter 19: papaya. In: Kole C (ed) Genome mapping and molecular breeding in plants, fruits and nuts, vol 4. Springer-Verlag, Berlin, pp 333–351Google Scholar
  54. Mumford RA, Seal SE (1997) Rapid single-tube immunocapture RT-PCR for the detection of two yam potyviruses. J Virol Methods 69(1/2):73–79CrossRefPubMedGoogle Scholar
  55. Nassuth A, Pollari E, Helmeczy K et al (2000) Improved RNA extraction and one–tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. J Virol Methods 90:37–49CrossRefPubMedGoogle Scholar
  56. Nemchinov L, Hadidi A, Foster JJ et al (1995) Sensitive detection of apple chlorotic leaf spot virus from infected apple or peach tissue using RT-PCR, IC-RT-PCR, or multiplex IC-RT-PCR. Acta Hortic 386:51–62CrossRefGoogle Scholar
  57. Nie X (2005) Reverse transcription loop-mediated isothermal amplification of DNA for detection of potato virus Y. Plant Dis 89:605–610CrossRefGoogle Scholar
  58. Nie X, Singh RP (2000) Detection of multiple potato viruses using an oligo (dT) as a common cDNA primer in multiplex RT-PCR. J Virol Methods 86:179–185CrossRefPubMedGoogle Scholar
  59. Nie X, Singh RP (2001) A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers. J Virol Methods 91:37–49CrossRefPubMedGoogle Scholar
  60. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63. doi: 10.1093/nar/28.12.e63 CrossRefPubMedPubMedCentralGoogle Scholar
  61. O’Connell J (2002) RT-PCR protocols. In: Methods in molecular biology series, vol 193. Human Press, TotowaGoogle Scholar
  62. Okuda M, Hanada K (2001) RT-PCR for detecting five distinct Tospovirus species using degenerate primers and dsRNA template. J Virol Methods 96:149–156CrossRefPubMedGoogle Scholar
  63. Olmos A, Bertolini E, Cambra M (2002) Simultaneous and co-operational amplification (Co-PCR): a new concept for detection of plant viruses. J Virol Methods 106:51–59CrossRefPubMedGoogle Scholar
  64. Olmos A, Esteban O, Bertolini E, Cambra M (2003) Nested RT-PCR in a single closed tube. In: Bartlett JMS, Stirling D (eds) PCR protocols: methods in molecular biology, vol 226, 2nd edn. Humana, Ottawa, pp 156–161Google Scholar
  65. Patel VP, Rojas MR, Paplomatas EJ, Gilbertson RL (1993) Cloning biologically active geminivirus DNA using PCR and overlapping primers. Nucleic Acids Res 11:1325–1326CrossRefGoogle Scholar
  66. Pipenburgh O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204CrossRefGoogle Scholar
  67. Raj SK, Saxena S, Hallan V, Singh BP (1998) Reverse transcription-polymerase chain reaction (RT-PCR) for the detection of cucumber mosaic virus in gladiolus. Biochem Mol Biol Int 45(1):101–113Google Scholar
  68. Rojas MR, Gilbertson RL, Russel DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77:340–347CrossRefGoogle Scholar
  69. Rosario K, Marr C, Varsani A et al (2016) Begomovirus-associated satellite DNA diversity captured through vector-enabled metagenomic (VEM) surveys using whiteflies (Aleyrodidae). Virus 8(2):36. doi: 10.3390/v8020036 CrossRefGoogle Scholar
  70. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  71. Saxena S, Verma S (2016) Chapter 20: Harnessing the genetic variability in plant-virus-vector complex interaction in Begomovirus family to prevent viral diseases. In: Sobti RC, Mishra S, Jaiswal K (eds) Recent advances in applied biosciences. Bio-Green Books, New Delhi. ISBN 10: 9384337641 ISBN 13: 9789384337643Google Scholar
  72. Saxena S, Hallan V, Singh BP, Sane PV (1998a) Leaf curl disease of Carica papaya from India may be caused by a bipartite Geminivirus. Plant Dis 82:126CrossRefGoogle Scholar
  73. Saxena S, Hallan V, Singh BP, Sane PV (1998b) Nucleotide sequence and inter-geminiviral homologies of the DNA-A of papaya leaf curl Geminivirus from India. Biochem Mol Biol Intl 45:101–113Google Scholar
  74. Saxena S, Hallan V, Singh BP, Sane PV (1998c) Evidence from nucleic acid hybridization test for a Geminivirus infection causing leaf curl disease of papaya in India. Indian J Exp Biol 36:229–232Google Scholar
  75. Saxena S, Srivastava AP, Chandra R, Mishra M, Ranade SA (2005) Analysis of genetic diversity among papaya cultivars using Single Primer Amplification Reaction (SPAR) methods. J Hort Sci Biotechnol 80:291–296CrossRefGoogle Scholar
  76. Saxena S, Singh N, Ranade SA, Babu GS (2011) Strategy for a generic resistance to Geminivirus infecting papaya amd tomato through in-silico siRNA search. Virus Genes 43:409–434CrossRefPubMedGoogle Scholar
  77. Saxena S, Kesarwani RK, Singh V, Singh S (2013) Designing of putative siRNA against geminiviral suppressors of RNAi to develop Geminivirus resistant Papaya crop. Int J Bioinf Res Appl 9(1):3–12. Online ISSN:1744-5493; Print:1744-5485CrossRefGoogle Scholar
  78. Saxena S, Singh VK, Verma S (2016) PCR mediated detection of sex and PaLCuV infection in papaya – a review. J Appl Hort 18(1):80–84Google Scholar
  79. Sharman M, Thomas J, Dietzgen RG (2000) Development of a multiplex immunocapture PCR with colourimetric detection for viruses of banana. J Virol Methods 89:75–88CrossRefPubMedGoogle Scholar
  80. Singh RP, Nie X, Singh M (2000) Duplex RT-PCR: reagent concentrations at reverse transcription stage affect the PCR performance. J Virol Methods 86:121–129CrossRefPubMedGoogle Scholar
  81. Sinha DP, Saxena S, Kumar S, Singh M (2011) Detection of pepper leaf curl through PCR amplification and expression of its coat protein in E.coli for antiserum production. Afr J Biotechnol 10(17):3290–3295CrossRefGoogle Scholar
  82. Sinha DP, Saxena S, Singh M, Tiwari SK (2012) Phylogenetic relationship of coat protein genomic components of Chilli leaf curl virus. Veg Sci 40(2):149–154Google Scholar
  83. Srivastava N, Chandra R, Saxena S, Bajpai A (2010) A PCR based amplification and detection of Papaya Leaf Curl Virus (PaLCuV). Proceedings of international symposium on papaya. Acta Horticultarae 851:241–246CrossRefGoogle Scholar
  84. Van Regenmortel MHV, Dubs MC (1993) Serological procedures. In: Matthews REF (ed) Diagnosis of plant virus diseases. CRC Press, Boca Raton, pp 159–214Google Scholar
  85. Varga A, James D (2005) Detection and differentiation of plum pox virus using real-time multiplex PCR with SYBR green and melting curve analysis: a rapid method for strain typing. J Virol Methods 123:213–220CrossRefPubMedGoogle Scholar
  86. Varsani A, Navas-Castillo J, Moriones E et al (2014) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159:2193–2203CrossRefPubMedGoogle Scholar
  87. Verma J, Saxena S, Babu SG (2013) Chapter 13: ELISA– based identification and detection of microbes, In: Analyzing microbes– manual of molecular biology techniques. Springer Protocols Handbook. Springer, BerlinGoogle Scholar
  88. Vincent M, Xu Y, Kong H (2004) Helicase–dependent isothermal DNA amplification. EMBO Rep 5:795–800CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wang D, Urisman A, Liu YT et al (2003) Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 1:257–260CrossRefGoogle Scholar
  90. Wei T, Lebas BSM, Shiller JB, Quinn BD, Clover GRG (2012) Detection of five viruses infecting dormant bulbs by TaqMan-based real-time RT-PCR. Australas Plant Path 41(1):93–98CrossRefGoogle Scholar
  91. Wyatt SD, Brown JK (1996) Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology 86:1288–1293CrossRefGoogle Scholar
  92. Yourno J (1992) A method for nested PCR with single closed reaction tubes. PCR Methods Appl 2:60–65CrossRefPubMedGoogle Scholar
  93. Zvevreva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Virus 4:2578–2597CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations