Skip to main content

Do We Have a Chance to Translate Bench-top Results to the Clinic Adequately? An Opinion

  • Chapter
  • First Online:
Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 1103 Accesses

Abstract

Animal models of ischemic, hemorrhagic stroke and transformation certainly have vivid importance for clinical studies and development of thrombolytic as well as neuroprotective drugs. Clear understanding of techniques for every type of stroke modeling highlights naturally impossible adverse effects of the surgery, which might greatly influence the interpretation of final experimental results. There are no stroke models that fully reflect human disease. Infarcts are relatively larger in experimental animals than in humans with strokes. The models are more analogous to massive hemispheric infarcts than to localized strokes such as those in the internal capsule. Every type of animal stroke model is a partial hallmark of clinical picture. Thus, knowledge about the variety of stroke models allows choosing the system, which will serves for testing drugs or compound, predicting effective doses, and evaluating possible adverse effects, pharmacokinatics. Clinical trials might be more informative and successful if benchtop results are clearly delineated and reflect treatment time window, mechanism, and doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADMA:

Asymmetric dimethylarginine

AF:

Atrial fibrillation

AIS:

Acute ischemic stroke

APP:

Amyloid precursor protein

BBB:

Blood-brain barrier

BFGF:

Basic fibroblast growth factor

CA:

Cardiac attack

CBP:

Central blood pressure

CIMT:

Carotid intima-media thickness

CVR:

Cerebrovascular reactivity

eNOS:

Endothelial nitric oxide synthase

ER:

Endothelial reticulum

ERO1:

ER oxidoreductin 1

FAD:

Flavin adenine dinucleotide

HI:

Hypoxic-ischemic

HT:

Hemorrhagic transformation

MABP:

Mean arterial blood pressure

MAPK:

Mitogen-activated protein kinase

MCA:

Middle cerebral artery

NO:

Nitric oxide

NOXs:

NADPH oxidases

PDI:

Disulfide isomerase

PMNs:

Polymorph nuclear leukocytes

PYK-2:

Protein tyrosine kinase-2

ROS:

Reactive oxygen species

TIA:

Transient ischemic attack

UA:

Uric acid

XDH:

Xanthine dehydrogenase

XO:

Xanthine oxidase

XOR:

Xanthine oxidoreductase

References

  1. Waltz AG. Clinical relevance of models of cerebral ischemia. Stroke. 1979;10(2):211–3.

    Article  CAS  PubMed  Google Scholar 

  2. Sutherland GR, Dix GA, Auer RN. Effect of age in rodent models of focal and forebrain ischemia. Stroke. 1996;27:1663–8.

    Article  CAS  PubMed  Google Scholar 

  3. Barber PA, Hoyte L, Colbourne F, Buchan AM. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke. 2004;35(7):1720–5.

    Article  PubMed  Google Scholar 

  4. Hossmann K-A. Pathophysiology and therapy of experimental stroke. J Cell Mol Neurobiol. 2006;26(7–8):1055–81.

    Article  Google Scholar 

  5. Jacob HJ, Kwitek AE. Rat genetics: attaching physiology and pharmacology to the genome. Nat Rev Genet. 2002;3:33–42.

    Article  CAS  PubMed  Google Scholar 

  6. Ginsberg MD. The 2002 Thomas Willis lecture adventures in the pathophysiology of brain ischemia: penumbra, gene. Stroke. 2003;34:214–23.

    Article  PubMed  Google Scholar 

  7. Wiebers DO, Adams HPJ, Whisnant JP. Animal models of stroke: are they relevant to human disease? Stroke. 1990;21:1–3.

    Article  CAS  PubMed  Google Scholar 

  8. Яхно НН. Болезни нервной системы. Москва: Медицина; 2007.

    Google Scholar 

  9. Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996;16:605–11.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265:1883–5.

    Article  CAS  PubMed  Google Scholar 

  11. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab. 1996;16:981–7.

    Article  CAS  PubMed  Google Scholar 

  12. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci. 1997;17:9157–64.

    CAS  PubMed  Google Scholar 

  13. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci U S A. 1991;88:11158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci. 1998;18:205–13.

    CAS  PubMed  Google Scholar 

  15. Le D, Das S, Wang YF, Yoshizawa T, Sasaki YF, Takasu M. Enhanced neuronal death from focal ischemia in AMPA-receptor transgenic mice. Mol Brain Res. 1997;52:235–41.

    Article  CAS  PubMed  Google Scholar 

  16. Connolly ESJ, Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD. Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion: role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest. 1996;97:209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hara H, Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cereb Blood Flow Metab. 1997;17:370–5.

    Article  CAS  PubMed  Google Scholar 

  18. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-kB is activated and promotes cell death in focal cerebral ischemia. Nat Med. 1999;5:554–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med. 1996;2:788–94.

    Article  CAS  PubMed  Google Scholar 

  20. Sheng H, Laskowitz DT, Bennett E, Schmechel DE, Bart RD, Saunders AM. Apolipoprotein E isoform-specific differences in outcome from focal ischemia in transgenic mice. J Cereb Blood Flow Metab. 1998;18:361–6.

    Article  CAS  PubMed  Google Scholar 

  21. Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, et al. Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model. Arterioscler Thromb Vasc Biol. 1999;19:2801–6.

    Article  CAS  PubMed  Google Scholar 

  22. VandeBerg JL, Williams-Blangero S. Advantages and limitations of nonhuman primates as animal models in genetic research on complex diseases. J Med Primatol. 1997;26(3):113–9.

    Article  CAS  PubMed  Google Scholar 

  23. STAIR. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30:2752–8.

    Article  Google Scholar 

  24. Heard K, Bebarta VS, Lowenstein SR. Methodological standards in human versus animal clinical trials. JAMA. 2005;294:40–1.

    CAS  PubMed  Google Scholar 

  25. Bebarta V, Luyten D, Heard K. Emergency medicine animal research-does use of randomization and blinding affect the results? Acad Emerg Med. 2003;10:684–7.

    Article  PubMed  Google Scholar 

  26. Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I. Where is the evidence that animal research benefits humans? BMJ. 2004;328:514–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Samsa GP, Matchar DB. Have randomized controlled trials of neuroprotective drugs been underpowered? An illustration of three statistical principles. Stroke. 2001;32:669–74.

    Article  CAS  PubMed  Google Scholar 

  28. Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke-lessons from animal models. Metab Brain Dis. 2004;19:151–67.

    Article  CAS  PubMed  Google Scholar 

  29. Hossmann KA. Genetically modified animals in molecular stroke research. Acta Neurochir Suppl. 2004;89:37–45.

    CAS  PubMed  Google Scholar 

  30. Liang D, Dawson TM, Dawson VL. What have genetically engineered mice taught us about ischemic injury? Curr Mol Med. 2004;4:207–25.

    Article  CAS  PubMed  Google Scholar 

  31. Richard GA, Odergren T, Ashwood T. Animal models of stroke-do they have value for discovering neuroprotective agents? Trends Pharmacol Sci. 2003;24:402–8.

    Article  CAS  Google Scholar 

  32. Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 2003;44:96–104.

    Article  CAS  PubMed  Google Scholar 

  33. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J. 2003;44:85–95.

    Article  CAS  PubMed  Google Scholar 

  34. Endres M, Dirnagl U. Ischemia and stroke. Adv Exp Med Biol. 2002;513:455–73.

    Article  CAS  PubMed  Google Scholar 

  35. Leker RR, Constantini S. Experimental models in focal cerebral ischemia-are we there yet? Acta Neurochir Suppl. 2002;83:55–9.

    CAS  PubMed  Google Scholar 

  36. Dewar D, Yam P, McCulloch J. Drug development for stroke: importance of protecting cerebral white matter. Eur J Pharmacol. 1999;375:41–50.

    Article  CAS  PubMed  Google Scholar 

  37. Small DL, Buchan AM. Animal models. Br Med Bull. 2000;56:307–17.

    Article  CAS  PubMed  Google Scholar 

  38. Donnan GA, Norrving B, Bamford JM, Bogousslavsky J. Classification of subcortical infarcts. Subcortical stroke. 2nd ed. Oxford: Oxford Medical Publications; 2002. p. 27–34.

    Google Scholar 

  39. Norrving B. Lacunar Infarction. Stroke. 2004;35:1778–9.

    Article  Google Scholar 

  40. Fisher M. Characterizing the target of acute stroke therapy. Stroke. 1997;28:866–72.

    Article  CAS  PubMed  Google Scholar 

  41. Baron J. Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis. 2001;11(suppl 1):2–8.

    Article  PubMed  Google Scholar 

  42. Lees KR. Advances in neuroprotection trials. Eur Neurol. 2001;45:6–10.

    Article  CAS  PubMed  Google Scholar 

  43. Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci. 1987;14:557–9.

    CAS  PubMed  Google Scholar 

  44. Hakim AM. Ischemic penumbra: the therapeutic window. Neurology. 1998;51:S44–S6.

    Article  CAS  PubMed  Google Scholar 

  45. Stroke Therapy Academic Industry Roundtable II. Recommendations for clinical trial evaluation of acute stroke therapies. Stroke. 2001;32:1598–606.

    Article  Google Scholar 

  46. Baron J. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis. 1999;9:193–201.

    Article  CAS  PubMed  Google Scholar 

  47. Grieco G, d’Hollosy M, Culliford AT, Jonas S. Evaluating neuroprotective agents for clinical anti-ischemic benefit using neurological and neuropsychological changes after cardiac surgery under cardiopulmonary bypass: methodological strategies and results of a double-blind, placebo-controlled trial of GM1 ganglioside. Stroke. 1996;27:858–74.

    Article  CAS  PubMed  Google Scholar 

  48. Heiss WD, Thiel A, Grond M, Graf R. Which targets are relevant for therapy of acute ischemic stroke? Stroke. 1999;30:1486–9.

    Article  CAS  PubMed  Google Scholar 

  49. Marchal G, Beaudouin V, Rioux P, de la Sayette V, Le Doze F, Viader F, et al. Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxel-based data analysis. Stroke. 1996;27:599–606.

    Article  CAS  PubMed  Google Scholar 

  50. Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G. Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain. 2001;124:20–9.

    Article  CAS  PubMed  Google Scholar 

  51. Muir KW, Grosset DG. Neuroprotection for acute stroke: making clinical trials work. Stroke. 1999;30:180–2.

    Article  CAS  PubMed  Google Scholar 

  52. Alonso de Lecinana M, Diez-Tejedor E, Carceller F, Roda JM. Cerebral ischemia: from animal studies to clinical practice: should the methods be reviewed? Cerebrovasc Dis. 2001;11(suppl 1):20–30.

    Article  PubMed  Google Scholar 

  53. Demchuk AM, Buchan AM. Predictors of stroke outcome. Neurol Clin. 2000;18:455–73.

    Article  CAS  PubMed  Google Scholar 

  54. Jorgensen HS, Reith J, Nakayama H, Kammersgaard LP, Houth JG, Raaschou HO, et al. Potentially reversible factors during the very acute phase of stroke and their impact on the prognosis: is there a large therapeutic potential to be explored? Cerebrovasc Dis. 2001;11:207–11.

    Article  CAS  PubMed  Google Scholar 

  55. Counsell C, Dennis M. Systematic review of prognostic models in patients with acute stroke. Cerebrovasc Dis. 2001;12:159–70.

    Article  CAS  PubMed  Google Scholar 

  56. Boysen G, Christensen H. Early stroke: a dynamic process. Stroke. 2001;32:2423–5.

    Article  CAS  PubMed  Google Scholar 

  57. Kagansky N, Levy S, Knobler H. The role of hyperglycemia in acute stroke. Arch Neurol. 2001;58:1209–12.

    Article  CAS  PubMed  Google Scholar 

  58. Demchuk AM, Morgenstern LB, Krieger DW, Linda CT, Hu W, Wein TH, et al. Serum glucose level and diabetes predict tissue plasminogen activator-related intracerebral hemorrhage in acute ischemic stroke. Stroke. 1999;30:34–9.

    Article  CAS  PubMed  Google Scholar 

  59. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 2001;32:2426–32.

    Article  CAS  PubMed  Google Scholar 

  60. Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. J Am Soc Exp Neurother. 2005;2:396–409.

    Google Scholar 

  61. Kidwell CS, Liebeskind DS, Starkman S, Saver JL. Trends in acute ischemic stroke trials through the 20th century. Stroke. 2001;32:1349–59.

    Article  CAS  PubMed  Google Scholar 

  62. Duncan PW, Jorgensen HS, Wade DT. Outcome measures in acute stroke trials: a systematic review and some recommendations to improve practice. Stroke. 2000;31:1429–38.

    Article  CAS  PubMed  Google Scholar 

  63. Sacco RL, DeRosa JT, Haley ECJ, Levin B, Ordronneau P, Phillips SJ, The Glycine Antagonist in Neuroprotection Americas Investigators, et al. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. JAMA. 2001;285:1719–28.

    Article  CAS  PubMed  Google Scholar 

  64. Lutsep HL, Clark WM. Neuroprotection in acute ischaemic stroke: current status and future potential. Drugs RD. 1999;1:3–8.

    Article  CAS  Google Scholar 

  65. Corbett D, Nurse S. The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog Neurobiol. 1998;54:531–48.

    Article  CAS  PubMed  Google Scholar 

  66. Hunter AJ, Mackay KB, Rogers DC. To what extent have functional studies of ischaemia in animals been useful in the assessment of potential neuroprotective agents? Trends Pharmacol Sci. 1998;19:59–66.

    Article  CAS  PubMed  Google Scholar 

  67. Kawamata T, Alexis NE, Dietrich WD, Finklestein SP. Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab. 1996;16:542–7.

    Article  CAS  PubMed  Google Scholar 

  68. Kawamata T, Ren J, Chan TCK, Charette M, Finklestein SP. Intracisternal osteogenic protein-1 enhances functional recovery following focal stroke. Neuroreport. 1998;9:1441–5.

    Article  CAS  PubMed  Google Scholar 

  69. Morgenstern LB. What have we learned from clinical neuroprotective trials? Neurology. 2001;57:S45–S7.

    Article  CAS  PubMed  Google Scholar 

  70. Slikker W, Saran J, Auer RN, Palmer GC, Narahashi T, Youdim MBH, et al. Neuroprotection: past successes and future challenges. Ann N Y Acad Sci. 2001;939:465–77.

    Article  Google Scholar 

  71. Neff SR. Rodent models of stroke. Arch Neurol. 1997;54:350–1.

    Article  CAS  PubMed  Google Scholar 

  72. Horn J, de Haan RJ, Vermeulen M, Luiten PGM, Limburg M. Nimodipine in animal model experiments of focal cerebral ischemia: a systematic review. Stroke. 2001;32:2433–8.

    Article  CAS  PubMed  Google Scholar 

  73. Becker KJ, Tirschwell DL. Ensuring patient safety in clinical trials for treatment of acute stroke. JAMA. 2001;286:2718–9.

    Article  CAS  PubMed  Google Scholar 

  74. Sherman DG, Atkinson RP, Chippendale T, Levin KA, Ng K, Futrell N, et al. Intravenous ancrod for treatment of acute ischemic stroke: the STAT study: a randomized controlled trial: stroke treatment with Ancrod trial. JAMA. 2000;283:2395–403.

    Article  CAS  PubMed  Google Scholar 

  75. Faden AI. Neuroprotection and traumatic brain injury. Arch Neurol. 2001;58:1553–5.

    Article  CAS  PubMed  Google Scholar 

  76. Maas AI, Steyerberg EW, Murray GD, Bullock R, Baethmann A, Marshall LF, et al. Why have recent trials of neuroprotective agents in head injury failed to show convincing efficacy? A pragmatic analysis and theoretical considerations. Neurosurgery. 1999;44:1286–98.

    CAS  PubMed  Google Scholar 

  77. Teasdale GM, Maas A, Iannotti F, Ohman J, Unterberg A. Challenges in translating the efficacy of neuroprotective agents in experimental models into knowledge of clinical benefits in head injured patients. Acta Neurochir. 1999;73:111–6.

    CAS  Google Scholar 

  78. Lees KR. Neuroprotection is unlikely to be effective in humans using current trial designs: an opposing view. Stroke. 2001;33:308–9.

    Google Scholar 

  79. Liebeskind DS, Kasner SE. Neuroprotection for ischaemic stroke: an unattainable goal? CNS Drugs. 2001;15:165–74.

    Article  CAS  PubMed  Google Scholar 

  80. DeGraba TJ, Pettigrew LC. Why do neuroprotective drugs work in animals but not humans? Neurol Clin. 2000;18:475–93.

    Article  CAS  PubMed  Google Scholar 

  81. Grotta J. Why do all drugs work in animals but none in stroke patients? 2 neuroprotective therapy. J Intern Med. 1995;237:89–94.

    Article  CAS  PubMed  Google Scholar 

  82. Wu LJ, Wu G, Akhavan Sharif MR, Baker A, Jia Y, Fahey FH, et al. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat Neurosci. 2012;15(4):565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiao F, Zhang S, Arnold TC, Alexander JS, Huang J, Carden DL, et al. Mild hypothermia induced before cardiac arrest reduces brain edema formation in rats. Acad Emerg Med. 2002;9(2):105–14.

    Article  PubMed  Google Scholar 

  84. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007;38(11):3000–6.

    Article  CAS  PubMed  Google Scholar 

  85. Belayev L, Busto R, Ikeda M, Rubin LL, Kajiwara A, Morgan L, et al. Protection against blood-brain barrier disruption in focal cerebral ischemia by the type IV phosphodiesterase inhibitor BBB022: a quantitative study. Brain Res. 1998;787(2):277–85.

    Article  CAS  PubMed  Google Scholar 

  86. https://www.clinicaltrials.gov/ct2/show/record/NCT01203800?term=BBB+stroke&rank=3. 2017.

  87. https://www.clinicaltrials.gov/ct2/show/study/NCT02974283?term=BBB+stroke&rank=2. 2017.

  88. Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke. 1994;25:202–11.

    Article  CAS  PubMed  Google Scholar 

  89. Danton GH, Dietrich D. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003;62(2):127–36.

    Article  CAS  PubMed  Google Scholar 

  90. Wang PY, Kao CH, Mui MY, Wang SJ. Leukocyte infiltration in acute hemispheric ischemic stroke. Stroke. 1993;24:236–40.

    Article  CAS  PubMed  Google Scholar 

  91. Kato H, Kogure K, Araki T, Itoyama Y. Graded expression of immunomolecules on activated microglia in the hippocampus following ischemia in a rat model of ischemic tolerance. Brain Res. 1995;694:85–93.

    Article  CAS  PubMed  Google Scholar 

  92. Schwab JM, Nguyen TD, Meyermann R, Schluesener HJ. Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD81 T-lymphocytes and activated microglia/macrophages. J Neuroimmunol. 2001;114:232–41.

    Article  CAS  PubMed  Google Scholar 

  93. Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A. 1999;96(23):13496–500.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gerhard A, Neumaier B, Elitok E, et al. In vivo imaging of activated microglia using PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport. 2000;11:2957–60.

    Article  CAS  PubMed  Google Scholar 

  95. Okada Y, et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke. 1994;25:202–11.

    Article  CAS  PubMed  Google Scholar 

  96. Haring H-P, et al. E-selectin appears in non-ischemic tissue during experimental focal cerebral ischemia. Stroke. 1996;27:1386–92.

    Article  CAS  PubMed  Google Scholar 

  97. https://www.clinicaltrials.gov/ct2/show/record/NCT02900833?term=BBB+stroke&rank=21. 2017.

  98. https://www.clinicaltrials.gov/ct2/show/record/NCT02282098?term=inflammation+anti+inflammatory+stroke&rank=1. 2016–2017.

  99. Danielyan KE, Oganesyn HM, Nahapetyan KM, Kevorkian GA, Vladimir D, Galoyan AA, et al. Stroke burden in adults in Armenia. Int J Stroke. 2012;7(3):248–9.

    Article  PubMed  Google Scholar 

  100. Tuttolomondo A, Di Raimondo D, Pecoraro R, Maida C, Arnao V, Della Corte V, et al. Early high-dosage atorvastatin treatment improved serum immune-inflammatory markers and functional outcome in acute ischemic strokes classified as large artery atherosclerotic stroke: a randomized trial. Medicine (Baltimore). 2016;95(13):e3186. doi:10.1097/MD.0000000000003186.

    Article  CAS  Google Scholar 

  101. https://www.clinicaltrials.gov/ct2/show/record/NCT02878772?term=inflammation+anti+inflammatory+stroke&rank=13. 2017.

  102. https://www.clinicaltrials.gov/ct2/show/record/NCT02145468?term=inflammation+anti+inflammatory+stroke&rank=24. 2017.

  103. https://www.clinicaltrials.gov/ct2/show/NCT01199549?term=inflammation+anti+inflammatory+stroke&rank=18. 2017.

  104. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007;27:2596–605.

    Article  PubMed  CAS  Google Scholar 

  105. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci. 2011;31:12992–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Girard S, Brough D, Lopez-Castejon G, Giles J, Rothwell NJ, Allan SM. Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia. 2013;61(5):813–24.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D, Nakata J, et al. Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol. 2004;94:203–6.

    CAS  Google Scholar 

  108. Kitamura Y, Yanagisawa D, Inden M, Takata K, Tsuchiya D, Kawasaki T, et al. Recovery of focal brain ischemia-induced behavioral dysfunction by intracerebroventricular injection of microglia. J Pharmacol Sci. 2005;97:289–93.

    Article  CAS  PubMed  Google Scholar 

  109. Hayashi Y, Tomimatsu Y, Suzuki H, Yamada J, Wu Z, Yao H, et al. The intra-arterial injection of microglia protects hippocampal CA1 neurons against global ischemia-induced functional deficits in rats. Neuroscience. 2006;142:87–96.

    Article  CAS  PubMed  Google Scholar 

  110. Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, et al. Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab. 2007;27:488–500.

    Article  CAS  PubMed  Google Scholar 

  111. Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, et al. Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS. 2010;5:e11746.

    Article  CAS  Google Scholar 

  112. Tomimoto H, Akiguchi I, Wakita H, Kinoshita A, Ikemoto A, Nakamura S, et al. Glial expression of cytokines in the brains of cerebrovascular disease patients. Acta Neuropathol. 1996;92(3):281–7.

    Article  CAS  PubMed  Google Scholar 

  113. Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A. 1998;95(26):15769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Smith JR, Gabler WL. Res Commun Mol Pathol Pharmacol. 1995;88:303–15.

    CAS  PubMed  Google Scholar 

  115. Smith JR, Gabler WL. Inflammation. 1994;18:193–201.

    Article  CAS  PubMed  Google Scholar 

  116. Clark WM, Lessov N, Lauten JD, Hazel K. J Mol Neurosci. 1997;9:103–8.

    Article  CAS  PubMed  Google Scholar 

  117. Valeriani V, Dewar D, McCulloch J. Quantitative assessment of ischemic pathology in axons, oligodendrocytes, and neurons: attenuation of damage after transient ischemia. J Cereb Blood Flow Metab. 2000;20(5):765–71.

    Article  CAS  PubMed  Google Scholar 

  118. Irving EA, Yatsushiro K, McCulloch J, Dewar D. Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab. 1997;17(6):612–22.

    Article  CAS  PubMed  Google Scholar 

  119. Arai K, Lo EH. Experimental models for analysis of oligodendrocyte pathophysiology in stroke. Exp Transl Stroke Med. 2009;1:6. doi:10.1186/2040-7378-1-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Imai H, Masayasu H, Dewar D, Graham DI, Macrae IM. Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke. 2001;32(9):2149–54.

    Article  CAS  PubMed  Google Scholar 

  121. Irving EA, Bentley DL, Parsons AA. Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol. 2001;102(6):627–35.

    Article  CAS  PubMed  Google Scholar 

  122. Drose S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem. 2008;283:21649–54.

    Article  PubMed  CAS  Google Scholar 

  123. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47:333–43.

    Article  CAS  PubMed  Google Scholar 

  124. Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life. 2001;52:159–64.

    Article  CAS  PubMed  Google Scholar 

  125. Mukherjee A, Martin SG. The thioredoxin system: a key target in tumour and endothelial cells. Br J Radiol. 2008;1:S57–68.

    Article  CAS  Google Scholar 

  126. Tu BP, Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004;164:341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marengo B, De Ciucis C, Verzola D, Pistoia V, Raffaghello L, Patriarca S, et al. Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med. 2008;44:474–82.

    Article  CAS  PubMed  Google Scholar 

  128. Tu BP, Weissman JS. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell. 2002;10:983–94.

    Article  CAS  PubMed  Google Scholar 

  129. Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9:2277–93.

    Article  CAS  PubMed  Google Scholar 

  130. Csordas G, Hajnoczky G. SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta. 1787;2009:1352–62.

    Google Scholar 

  131. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  CAS  PubMed  Google Scholar 

  132. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal. 2006;8:691–728.

    Article  CAS  PubMed  Google Scholar 

  133. Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal. 2009;11:841–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ray R, Shah AM. NADPH oxidase and endothelial cell function. Clin Sci (Lond). 2005;109:217–26.

    Article  CAS  Google Scholar 

  135. Leto TL, Morand S, Hurt D, Ueyama TT. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal. 2009;11:2607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Daiber A, Munzel T. Oxidativer Stress, Redoxregulation und NO-Bioverfu¨ gbarkeit-Experimentelle und Klinische Aspekte. Darmstadt: Steinkopff Verlag Darmstadt; 2006.

    Google Scholar 

  137. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010;107:106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96.

    Article  CAS  PubMed  Google Scholar 

  139. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, et al. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension. 2005;45:438–44.

    Article  CAS  PubMed  Google Scholar 

  140. Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal. 2012;20(2):308–24. 0

    Article  PubMed  CAS  Google Scholar 

  141. Gladden JD, Zelickson BR, Wei CC, Ulasova E, Zheng J, Ahmed MI, et al. Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload. Free Radic Biol Med. 2011;51:1975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, et al. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal. 2012;17(11):1528–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Moriwaki Y, Yamamoto T, Higashino K. Enzymes involved in purine metabolism--a review of histochemical localization and functional implications. Histol Histopathol. 1999;14(4):1321–40.

    CAS  PubMed  Google Scholar 

  144. Hille R, Nishino T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 1995;9(11):995–1003.

    CAS  PubMed  Google Scholar 

  145. Olson JS, Ballou DP, Palmer G, Massey V. The mechanism of action of xanthine oxidase. J Biol Chem. 1974;249(14):4363–82.

    CAS  PubMed  Google Scholar 

  146. Ichida K, Amaya Y, Noda K, Minoshima S, Hosoya T, Sakai O, et al. Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene. 1993;133(2):279–84.

    Article  CAS  PubMed  Google Scholar 

  147. Mink RB, Dutka AJ, Hallenbeck JM. Allopurinol pretreatment improves evoked response recovery following global cerebral ischemia in dogs. Stroke. 1991;22:660–5.

    Article  CAS  PubMed  Google Scholar 

  148. Ono T, Tsuruta R, Fujita M, Aki HS, Kutsuna S, Kawamura Y, et al. Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion. Brain Res. 2009;1305:158–67.

    Article  CAS  PubMed  Google Scholar 

  149. Widmer R, Engels M, Voss P, Grune T. Postanoxic damage of microglial cells is mediated by xanthine oxidase and cyclooxygenase. Free Radic Res. 2007;41(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  150. Fatokun AA, Stone TW, Smith RA. Hydrogen peroxide mediates damage by xanthine and xanthine oxidase in cerebellar granule neuronal cultures. Neurosci Lett. 2007;416(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  151. Valencia A, Morán J. Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med. 2004;36(9):1112–25.

    Article  CAS  PubMed  Google Scholar 

  152. Muir SW, Harrow C, Dawson J, Lees KR, Weir CJ, Sattar N, et al. Allopurinol use yields potentially beneficial effects on inflammatory indices in those with recent ischemic stroke: a randomized, double-blind, placebo-controlled trial. Stroke. 2008;39(12):3303–7.

    Article  CAS  PubMed  Google Scholar 

  153. Wilson DK, Rudolph F, Quiocho F. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science. 1991;252:1278–84.

    Article  CAS  PubMed  Google Scholar 

  154. Basuroy S, Bhattacharya S, Leffler CW, Parfenova H. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol. 2009;296(3):C422–32.

    Article  CAS  PubMed  Google Scholar 

  155. Okada H, Woodcock-Mitchell J, Mitchell J, Sakamoto T, Marutsuka K, Sobel BE, et al. Induction of plasminogen activator inhibitor type 1 and type 1 collagen expression in rat cardiac microvascular endothelial cells by interleukin-1 and its dependence on oxygen-centered free radicals. Circulation. 1998;97:2175–82.

    Article  CAS  PubMed  Google Scholar 

  156. Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J. The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res. 1997;41(5):607–16.

    Article  CAS  PubMed  Google Scholar 

  157. Morris CD, Carson S. Routine vitamin supplementation to prevent cardiovascular disease: a summary of the evidence for the U. S. Preventive Services Task Force. Ann Intern Med. 2003;139:56–70.

    Article  CAS  PubMed  Google Scholar 

  158. Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Danielyan KE. Subcomponents of Vitamin B complex regulate the growth and development of human brain derived cells. Am J Biomed Res. 2013;1(2):28–34.

    Article  CAS  Google Scholar 

  160. Danielyan KE, Kevorkian GA. Xanthine oxidase activity regulates human embryonic brain cells growth. Biopolym Cell. 2011;27(5):350–3.

    Article  CAS  Google Scholar 

  161. Danielyan KE. Dependence of cells survival from xanthine oxidase and dihydopyrimidine dehydrogenase correlative activities in human brain derived cell culture. Central Nervous System Agents in Medicinal Chemistry. 2013;in press.

    Google Scholar 

  162. Danielyan KE, Chailyan SG. Xanthine dehydrogenase inhibition stimulates growth and development of human brain derived cells. Am J Med Biol Res. 2013;1(4):95–8.

    Article  CAS  Google Scholar 

  163. Higgins P, Walters MR, Murray HM, McArthur K, McConnachie A, Lees KR, et al. Allopurinol reduces brachial and central blood pressure, and carotid intima-media thickness progression after ischaemic stroke and transient ischaemic attack: a randomised controlled trial. Heart. 2014;100(14):1085–92.

    Article  CAS  PubMed  Google Scholar 

  164. Dawson J, Quinn TJ, Harrow C, Lees KR, Weir CJ, Cleland SJ, et al. Allopurinol and nitric oxide activity in the cerebral circulation of those with diabetes. Diabetes Care. 2009;32:135–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dawson J, Quinn TJ, Harrow C, Lees KR, Walters MR. The effect of allopurinol on the cerebral vasculature of patients with subcortical stroke; a randomized trial. Br J Clin Pharmacol. 2009;68(5):662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dawson J, Quinn T, Walters M. Uric acid reduction: a new paradigm in the management of cardiovascular risk? Curr Med Chem. 2007;14:1879–86.

    Article  CAS  PubMed  Google Scholar 

  167. Hare JM, Mangal B, Brown J, Fisher C, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. J Am Coll Cardiol. 2008;51:2301–9.

    Article  CAS  PubMed  Google Scholar 

  168. Gavin AD, Struthers AD. Allopurinol reduces B-type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart. 2005;91:749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mercuro G, Vitale C, Cerquetani E, Zoncu S, Deidda M, Fini M, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol. 2004;94:932–5.

    Article  CAS  PubMed  Google Scholar 

  170. Doehner W, Anker SD. Xanthine oxidase inhibition for chronic heart failure: is allopurinol the next therapeutic advance in heart failure? Heart. 2005;91:707–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114:2508–16.

    Article  CAS  PubMed  Google Scholar 

  172. Danielyan KE, Simonyan AA. Protective abilities of pyridoxine in experimental oxidative stress settings in vivo and in vitro. Biomed Pharmacother. 2017;86:537–40.

    Article  CAS  PubMed  Google Scholar 

  173. Khan F, George J, Wong K, McSwiggan S, Struthers AD, Belch JJ. Allopurinol treatment reduces arterial wave reflection in stroke survivors. Cardiovasc Ther. 2008;26(4):247–52.

    Article  CAS  PubMed  Google Scholar 

  174. https://www.clinicaltrials.gov/ct2/show/NCT02122718?term=xanthine+oxidase+stroke&rank=1. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Edgar Danielyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danielyan, K.E. (2017). Do We Have a Chance to Translate Bench-top Results to the Clinic Adequately? An Opinion. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_26

Download citation

Publish with us

Policies and ethics