Skip to main content

Involvement of Noncoding RNAs in Stress-Related Neuropsychiatric Diseases Caused by DOHaD Theory

ncRNAs and DOHaD-Induced Neuropsychiatric Diseases

  • Chapter
  • First Online:
Developmental Origins of Health and Disease (DOHaD)

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1012))

Abstract

According to the DOHaD theory, low birth weight is a risk factor for various noncommunicable chronic diseases that develop later in life. Noncoding RNAs (ncRNAs), including miRNAs, siRNAs, piRNAs, and lncRNAs, are functional RNA molecules that are transcribed from DNA but that are not translated into proteins. In general, miRNAs, siRNAs, and piRNAs function to regulate gene expression at the transcriptional and posttranscriptional levels. Studying ncRNAs has provided opportunities for new diagnosis and therapeutic knowledge in the endocrinological and metabolic fields as well as cancer biology. In this review, we focus on the roles of miRNAs and lncRNAs in the pathophysiology of stress-related neuropsychiatric diseases, which show abnormal blood hormone levels due to loss of feedback control and/or decreased sensitivity. Numerous recent studies have begun to unveil the importance of ncRNAs in regulation of stress-related hormone levels and functions. We summarize the involvement of abnormal ncRNA expression in the development of stress-related neuropsychiatric diseases based on the DOHaD theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

Adrenocorticotropin

ADHD:

Attention deficit hyperactivity disorder

CeA:

Central nucleus of the amygdala

CRF:

Corticotropin-releasing factor

CRF-R:

CRF receptor

GR:

Glucocorticoid receptor

GRE:

Glucocorticoid-responsive element

HFD:

High-fat diet

HPA:

Hypothalamic-pituitary-adrenal

lncRNA:

Long noncoding RNA

miRNA:

microRNA

ncRNA:

Noncoding RNA

POMC:

Proopiomelanocortin

PTSD:

Post-traumatic stress disorder

PVN:

Paraventricular nucleus of the hypothalamus

UTR:

Untranslated region

References

  1. Newnham JP. The developmental origins of health and disease (DOHaD) – why it is so important to those who work in fetal medicine. Ultrasound Obstet Gynecol. 2007;29(2):121–3. https://doi.org/10.1002/uog.3938.

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. https://doi.org/10.1111/j.1365-2796.2007.01809.x.

    Article  PubMed  CAS  Google Scholar 

  3. Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, Godfrey K, Gluckman P, Hanson M, Kuh D, Nathanielsz P, Nestel P, Thornburg KL. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatr Res. 2007;61(5 Pt 1):625–9. https://doi.org/10.1203/pdr.0b013e3180459fcd.

    Article  PubMed  Google Scholar 

  4. Hanson M. The birth and future health of DOHaD. J Dev Orig Health Dis. 2015;6(5):434–7. https://doi.org/10.1017/S2040174415001129.

    Article  PubMed  CAS  Google Scholar 

  5. Fitzhardinge PM, Inwood S. Long-term growth in small-for-date children. Acta Paediatr Scand Suppl. 1989;349:27–33.

    Article  CAS  PubMed  Google Scholar 

  6. Karlberg J, Albertsson-Wikland K. Growth in full-term small-for-gestational-age infants: from birth to final height. Pediatr Res. 1995;38(5):733–9. https://doi.org/10.1203/00006450-199511000-00017.

    Article  PubMed  CAS  Google Scholar 

  7. Takeuchi A, Yorifuji T, Takahashi K, Nakamura M, Kageyama M, Kubo T, Ogino T, Doi H. Neurodevelopment in full-term small for gestational age infants: A nationwide Japanese population-based study. Brain Dev. 2016;38(6):529–37. https://doi.org/10.1016/j.braindev.2015.12.013.

    Article  PubMed  Google Scholar 

  8. Botellero VL, Skranes J, Bjuland KJ, Lohaugen GC, Haberg AK, Lydersen S, Brubakk AM, Indredavik MS, Martinussen M. Mental health and cerebellar volume during adolescence in very-low-birth-weight infants: a longitudinal study. Child Adolesc Psychiatr Ment Health. 2016;10:6. https://doi.org/10.1186/s13034-016-0093-8.

    Article  Google Scholar 

  9. Harvey S, Phillips JG, Rees A, Hall TR. Stress and adrenal function. J Exp Zool. 1984;232(3):633–45. https://doi.org/10.1002/jez.1402320332.

    Article  PubMed  CAS  Google Scholar 

  10. Emeric-Sauval E. Corticotropin-releasing factor (CRF) – a review. Psychoneuroendocrinology. 1986;11(3):277–94.

    Article  CAS  PubMed  Google Scholar 

  11. Keller-Wood M. Hypothalamic-pituitary – adrenal axis-feedback control. Compr Physiol. 2015;5(3):1161–82. https://doi.org/10.1002/cphy.c140065.

    Article  PubMed  Google Scholar 

  12. de Quervain D, Schwabe L, Roozendaal B. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat Rev Neurosci. 2017;18(1):7–19. https://doi.org/10.1038/nrn.2016.155.

    Article  PubMed  CAS  Google Scholar 

  13. Oliveira M, Rodrigues AJ, Leao P, Cardona D, Pego JM, Sousa N. The bed nucleus of stria terminalis and the amygdala as targets of antenatal glucocorticoids: implications for fear and anxiety responses. Psychopharmacology. 2012;220(3):443–53. https://doi.org/10.1007/s00213-011-2494-y.

    Article  PubMed  CAS  Google Scholar 

  14. Shepard JD, Barron KW, Myers DA. Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res. 2000;861(2):288–95.

    Article  CAS  PubMed  Google Scholar 

  15. Pomara N, Greenberg WM, Branford MD, Doraiswamy PM. Therapeutic implications of HPA axis abnormalities in Alzheimer’s disease: review and update. Psychopharmacol Bull. 2003;37(2):120–34.

    PubMed  Google Scholar 

  16. Schelling G. Post-traumatic stress disorder in somatic disease: lessons from critically ill patients. Prog Brain Res. 2008;167:229–37. https://doi.org/10.1016/S0079-6123(07)67016-2.

    Article  PubMed  Google Scholar 

  17. Wosu AC, Valdimarsdottir U, Shields AE, Williams DR, Williams MA. Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress. Ann Epidemiol. 2013;23(12):797–811. e792. https://doi.org/10.1016/j.annepidem.2013.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol. 2008;581(1–2):113–20. https://doi.org/10.1016/j.ejphar.2007.12.005.

    Article  PubMed  CAS  Google Scholar 

  19. Huston JP, Komorowski M, de Souza Silva MA, Lamounier-Zepter V, Nikolaus S, Mattern C, Muller CP, Topic B. Chronic corticosterone treatment enhances extinction-induced depression in aged rats. Horm Behav. 2016;86:21–6. https://doi.org/10.1016/j.yhbeh.2016.09.003.

    Article  PubMed  CAS  Google Scholar 

  20. Fischer S, Strawbridge R, Vives AH, Cleare AJ. Cortisol as a predictor of psychological therapy response in depressive disorders: systematic review and meta-analysis. Br J Psychiatry. 2017;210(2):105–9. https://doi.org/10.1192/bjp.bp.115.180653.

    Article  PubMed  Google Scholar 

  21. Paskitti ME, McCreary BJ, Herman JP. Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Brain Res Mol Brain Res. 2000;80(2):142–52.

    Article  CAS  PubMed  Google Scholar 

  22. Ordyan NE, Pivina SG, Rakitskaya VV, Shalyapina VG. The neonatal glucocorticoid treatment-produced long-term changes of the pituitary-adrenal function and brain corticosteroid receptors in rats. Steroids. 2001;66(12):883–8.

    Article  CAS  PubMed  Google Scholar 

  23. Riedmann LT, Schwentner R. miRNA, siRNA, piRNA and argonautes: news in small matters. RNA Biol. 2010;7(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60. https://doi.org/10.1038/sj.emboj.7600385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27. https://doi.org/10.1101/gad.1262504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4. https://doi.org/10.1038/nature03868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 2015;57(3):397–407. https://doi.org/10.1016/j.molcel.2014.11.030.

    Article  PubMed  CAS  Google Scholar 

  28. Schneeberger M, Altirriba J, Garcia A, Esteban Y, Castano C, Garcia-Lavandeira M, Alvarez CV, Gomis R, Claret M. Deletion of miRNA processing enzyme dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity. Mol Metab. 2012;2(2):74–85. https://doi.org/10.1016/j.molmet.2012.10.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nishihara T, Zekri L, Braun JE, Izaurralde E. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res. 2013;41(18):8692–705. https://doi.org/10.1093/nar/gkt619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. https://doi.org/10.1038/nature03702.

    Article  PubMed  CAS  Google Scholar 

  31. Henshall DC, Hamer HM, Pasterkamp RJ, Goldstein DB, Kjems J, Prehn JH, Schorge S, Lamottke K, Rosenow F. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016;15(13):1368–76. https://doi.org/10.1016/S1474-4422(16)30246-0.

    Article  PubMed  CAS  Google Scholar 

  32. Mitra B, Rau TF, Surendran N, Brennan JH, Thaveenthiran P, Sorich E, Fitzgerald MC, Rosenfeld JV, Patel SA. Plasma micro-RNA biomarkers for diagnosis and prognosis after traumatic brain injury: a pilot study. J Clin Neurosci. 2017;38:37. https://doi.org/10.1016/j.jocn.2016.12.009.

    Article  PubMed  CAS  Google Scholar 

  33. Li N, Pan X, Zhang J, Ma A, Yang S, Ma J, Xie A. Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci. 2017;38:761. https://doi.org/10.1007/s10072-017-2841-9.

    Article  PubMed  Google Scholar 

  34. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3(11):e3694. https://doi.org/10.1371/journal.pone.0003694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83. https://doi.org/10.1586/epr.09.17.

    Article  PubMed  CAS  Google Scholar 

  36. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33. https://doi.org/10.1093/nar/gkr254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006;17(3):189–202. https://doi.org/10.1007/s00335-005-0066-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Celic T, Meuth VM, Six I, Massy ZA, Metzinger L. The mir-221/222 cluster is a key player in vascular biology via the fine-tuning of endothelial cell physiology. Curr Vasc Pharmacol. 2017;15(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kugel JF, Goodrich JA. The regulation of mammalian mRNA transcription by lncRNAs: recent discoveries and current concepts. Epigenomics. 2013;5(1):95–102. https://doi.org/10.2217/epi.12.69.

    Article  PubMed  CAS  Google Scholar 

  40. Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2(11):986–91. https://doi.org/10.1093/embo-reports/kve230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699–712. https://doi.org/10.1038/nrm3679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30(8):348–55. https://doi.org/10.1016/j.tig.2014.06.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev. 2015;87:15–24. https://doi.org/10.1016/j.addr.2015.05.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hu K, Zhang J, Liang M. LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p. In Vitro Cell Dev Biol Anim. 2016;53:277. https://doi.org/10.1007/s11626-016-0102-5.

    Article  PubMed  CAS  Google Scholar 

  45. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14. https://doi.org/10.1016/j.molcel.2011.08.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. https://doi.org/10.1038/nrg3606.

    Article  PubMed  CAS  Google Scholar 

  47. Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet. 2014;5:164. https://doi.org/10.3389/fgene.2014.00164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Smolle E, Haybaeck J. Non-coding RNAs and lipid metabolism. Int J Mol Sci. 2014;15(8):13494–513. https://doi.org/10.3390/ijms150813494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bischof C, Krishnan J. Exploiting the hypoxia sensitive non-coding genome for organ-specific physiologic reprogramming. Biochimica et Biophysica Acta. 2016;1863(7 Pt B):1782–90. https://doi.org/10.1016/j.bbamcr.2016.01.024.

    Article  PubMed  CAS  Google Scholar 

  50. Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C, Fragapane P, Mele A. Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res. 2010;208(1):265–9. https://doi.org/10.1016/j.bbr.2009.11.012.

    Article  PubMed  CAS  Google Scholar 

  51. Mannironi C, Camon J, De Vito F, Biundo A, De Stefano ME, Persiconi I, Bozzoni I, Fragapane P, Mele A, Presutti C. Acute stress alters amygdala microRNA miR-135a and miR-124 expression: inferences for corticosteroid dependent stress response. PLoS One. 2013;8(9):e73385. https://doi.org/10.1371/journal.pone.0073385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Schmidt U, Keck ME, Buell DR. miRNAs and other non-coding RNAs in posttraumatic stress disorder: a systematic review of clinical and animal studies. J Psychiatr Res. 2015;65:1–8. https://doi.org/10.1016/j.jpsychires.2015.03.014.

    Article  PubMed  Google Scholar 

  53. Babenko O, Kovalchuk I, Metz GA. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev. 2015;48:70–91. https://doi.org/10.1016/j.neubiorev.2014.11.013.

    Article  PubMed  Google Scholar 

  54. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, Gil S, Mayberg HS, Dunlop BW, Menke A, Awatramani R, Binder EB, Deneris ES, Lowry CA, Chen A. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83(2):344–60. https://doi.org/10.1016/j.neuron.2014.05.042.

    Article  PubMed  CAS  Google Scholar 

  55. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329(5998):1537–41. https://doi.org/10.1126/science.1193692.

    Article  PubMed  CAS  Google Scholar 

  56. Song MF, Dong JZ, Wang YW, He J, Ju X, Zhang L, Zhang YH, Shi JF, Lv YY. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord. 2015;178:25–31. https://doi.org/10.1016/j.jad.2015.02.022.

    Article  PubMed  CAS  Google Scholar 

  57. Cui X, Sun X, Niu W, Kong L, He M, Zhong A, Chen S, Jiang K, Zhang L, Cheng Z. Long non-coding RNA: potential diagnostic and therapeutic biomarker for major depressive disorder. Med Sci Monitor. 2016;22:5240–8.

    Article  CAS  Google Scholar 

  58. Wang Y, Zhao X, Ju W, Flory M, Zhong J, Jiang S, Wang P, Dong X, Tao X, Chen Q, Shen C, Zhong M, Yu Y, Brown WT, Zhong N. Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder. Transl Psychiatry. 2015;5:e660. https://doi.org/10.1038/tp.2015.144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ziats MN, Rennert OM. Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci. 2013;49(3):589–93. https://doi.org/10.1007/s12031-012-9880-8.

    Article  PubMed  CAS  Google Scholar 

  60. Volk N, Pape JC, Engel M, Zannas AS, Cattane N, Cattaneo A, Binder EB, Chen A. Amygdalar MicroRNA-15a is essential for coping with chronic stress. Cell Rep. 2016;17(7):1882–91. https://doi.org/10.1016/j.celrep.2016.10.038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Higuchi F, Uchida S, Yamagata H, Abe-Higuchi N, Hobara T, Hara K, Kobayashi A, Shintaku T, Itoh Y, Suzuki T, Watanabe Y. Hippocampal MicroRNA-124 enhances chronic stress resilience in mice. J Neurosci. 2016;36(27):7253–67. https://doi.org/10.1523/JNEUROSCI.0319-16.2016.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8. https://doi.org/10.1126/scisignal.2000568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nemoto T, Mano A, Shibasaki T. miR-449a contributes to glucocorticoid-induced CRF-R1 downregulation in the pituitary during stress. Mol Endocrinol. 2013;27(10):1593–602. https://doi.org/10.1210/me.2012-1357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nemoto T, Kakinuma Y, Shibasaki T. Restraint-induced glucocorticoid receptor downregulation is dysregulated in high fat diet-fed rats likely from impairment of miR-142-3p expression in the hypothalamus and hippocampus. Am J Life Sci. 2015;3(3–2):24–30. https://doi.org/10.11648/j.ajls.s.2015030302.15.

    Article  CAS  Google Scholar 

  65. Chen PY, Ganguly A, Rubbi L, Orozco LD, Morselli M, Ashraf D, Jaroszewicz A, Feng S, Jacobsen SE, Nakano A, Devaskar SU, Pellegrini M. Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol Genomics. 2013;45(14):565–76. https://doi.org/10.1152/physiolgenomics.00034.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Huang L, Shen Z, Xu Q, Huang X, Chen Q, Li D. Increased levels of microRNA-424 are associated with the pathogenesis of fetal growth restriction. Placenta. 2013;34(7):624–7. https://doi.org/10.1016/j.placenta.2013.04.009.

    Article  PubMed  CAS  Google Scholar 

  67. Nishi M, Horii-Hayashi N, Sasagawa T. Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci. 2014;8:166. https://doi.org/10.3389/fnins.2014.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, Kovalchuk I, Kovalchuk O, Metz GA. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One. 2013;8(2):e56967. https://doi.org/10.1371/journal.pone.0056967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, Yamagata H, McEwen BS, Watanabe Y. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci. 2010;30(45):15007–18. https://doi.org/10.1523/JNEUROSCI.1436-10.2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Moss TJ, Sloboda DM, Gurrin LC, Harding R, Challis JR, Newnham JP. Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R960–70.

    Article  CAS  PubMed  Google Scholar 

  71. Mansell T, Novakovic B, Meyer B, Rzehak P, Vuillermin P, Ponsonby AL, Collier F, Burgner D, Saffery R, Ryan J, BISi t. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Transl Psychiatry. 2016;6:e765. https://doi.org/10.1038/tp.2016.32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nemoto T, Kakinuma Y, Shibasaki T. Impaired miR449a-induced downregulation of Crhr1 expression in low-birth-weight rats. J Endocrinol. 2015;224(2):195–203. https://doi.org/10.1530/JOE-14-0537.

    Article  PubMed  CAS  Google Scholar 

  73. Murphy MO, Herald JB, Wills CT, Unfried SG, Cohn DM, Loria AS. Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress. Am J Phys Endocrinol Metab. 2017;312(2):E98–E108. https://doi.org/10.1152/ajpendo.00308.2016.

    Article  Google Scholar 

  74. Strata F, Giritharan G, Sebastiano FD, Piane LD, Kao CN, Donjacour A, Rinaudo P. Behavior and brain gene expression changes in mice exposed to preimplantation and prenatal stress. Reprod Sci. 2015;22(1):23–30. https://doi.org/10.1177/1933719114557900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cetin I, Mando C, Calabrese S. Maternal predictors of intrauterine growth restriction. Curr Opin Clin Nutr Metab Care. 2013;16(3):310–9. https://doi.org/10.1097/MCO.0b013e32835e8d9c.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure Statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Nemoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nemoto, T., Kakinuma, Y. (2018). Involvement of Noncoding RNAs in Stress-Related Neuropsychiatric Diseases Caused by DOHaD Theory. In: Kubota, T., Fukuoka, H. (eds) Developmental Origins of Health and Disease (DOHaD) . Advances in Experimental Medicine and Biology, vol 1012. Springer, Singapore. https://doi.org/10.1007/978-981-10-5526-3_6

Download citation

Publish with us

Policies and ethics