Skip to main content

Cellulases: Industrial Workhorse in Bioenergy Sector

  • Chapter
  • First Online:
Metabolic Engineering for Bioactive Compounds
  • 1052 Accesses

Abstract

There exists a diverse array of microorganisms in the environments which secretes cellulase enzyme. Cellulases are multienzyme proteins acting on cellulose to convert them into smaller sugar components such as glucose. These enzymes are widely used in many industrial applications such as processing cotton, recycling paper and additivities of feed. The challenges which the world faces currently are concerned with rising oil prices and global warming, and in this context, the cellulases have gained importance as the property of cellulases in cellulose degradation has played an important role in sustainable biofuel production. However, high cost of cellulases is one of the biggest hindrances for commercialization of cellulosic biofuel technology and for bringing out the cost-effective technology; major research is focused on enhancing enzyme efficiency and in reducing capital costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312. doi:10.1016/j.biortech.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  • Baker JO, Ehrman CI, Adney WS, Thomas SR, Himmel ME (1998) Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl Biochem Biotechnol 72:395–403. doi:10.1007/BF02920154

    Article  Google Scholar 

  • Bidlack J, Malone M, Benson R (1992) Molecular structure and component integration of secondary cell wall in plants. Proc Okla Acad Sci 72:51–56

    CAS  Google Scholar 

  • Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and Hemicellulases. Portland Press, Cambridge, pp 29–51

    Google Scholar 

  • Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals endo character of the cellobiohydrolase Cel6A from Humicolainsolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66:1444–1452. doi:10.1128/AEM.66.4.1444-1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Hayn M, Esterbauer H (1992) Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei. Biochem Biophys Acta 1121:54–60. doi:10.1016/0167-4838(92)90336-C

    CAS  PubMed  Google Scholar 

  • Decker CH, Visser J, Schreier P (2000) β-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J Agric Food Chem 48:4929–4936. doi:10.1021/jf000434d

    Article  CAS  PubMed  Google Scholar 

  • Din N, Coutinho JB, Gilkes NR et al (1995) Interactions of cellulases from Cellulomonas fimi with cellulose. Prog Biotechnol 10:261–270. doi:10.1016/S0921-0423(06)80109-7

    Article  CAS  Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178. doi:10.1016/1360-1385(96)10019-4

    Article  Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure and reactions. Walter de Gruyter& Co, Berlin, p 613

    Book  Google Scholar 

  • Gan Q, Allen SJ, Taylor G (2003) Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modeling. Process Biochem 38:1003–1018. doi:10.1016/S0032-9592(02)00220-0

    Article  CAS  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. doi:10.1016/j.apenergy.2015.01.045

    Article  CAS  Google Scholar 

  • Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194. doi:10.1099/00221287-139-2-187

    Article  CAS  Google Scholar 

  • Gruno M, Valjamae P, Pettersen G, Johansson G (2004) Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 86:503–511. doi:10.1002/bit.10838

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696. doi:10.1042/bj3160695

    Article  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Teeri TT, Warren RAJ (1998) A scheme for designating enzymes that hydrolyze the polysaccharides in the cell walls of plants. FEBS Lett 425:352–354. doi:10.1016/S0014-5793(98)00265-8

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  PubMed  Google Scholar 

  • Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287

    Article  CAS  PubMed  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. doi:10.1186/1754-6834-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Energy Agency (2012) World energy outlook. OECD/IEA, Paris

    Google Scholar 

  • Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99:63–78. doi:10.1016/S0168-1656(02)00156-6

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspective. Ind J Microbiol Biotechnol 35:377–391. doi:10.1007/s10295-008-0327-8

    Article  CAS  Google Scholar 

  • Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 98-100:641–654. doi:10.1385/ABAB:98-100:1-9:641

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172. doi:10.1038/nbt0208-169

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi:10.1128/MMBR.66.3.506-577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield S, Saddler J, Gübitz G (1998) Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme Microb Technol 23(1–2):133–140. doi:10.1016/S0141-0229(98)00033-7

    Article  CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Proc 15:804–816. doi:10.1021/bp9900864

    Article  CAS  Google Scholar 

  • Monserrate E, Leschine SB, Canale-Parola E (2001) Clostridium hungatei sp. Nov. a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol 51:123–132

    Article  CAS  PubMed  Google Scholar 

  • Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 1:00285–00210. doi:10.1128/mBio.00285-10

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14:578–597. doi:10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207. doi:10.1023/A:1018431705579

    Article  Google Scholar 

  • Onishi N, Tanaka T (1996) Purification and properties of a galacto- and gluco-oligosaccharide-producing beta-glycosidase from Rhodotorula minuta IFO879. J Ferment Bioeng 82:439–443

    Article  CAS  Google Scholar 

  • Percival-Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. doi:10.1016/j.biotechadv.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  • Pirzadah T, Garg S, Singh J, Vyas A, Kumar M, Gaur N, Bala M, Rehman R, Varma A, Kumar V, Kumar M (2014) Characterization of Actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates by response surface methodology. Spring 3:622. doi:10.1186/2193-1801-3-622

    Article  Google Scholar 

  • Saggi SK, Dey P (2016) An overview of simultaneous saccharification and fermentation of starchy and lignocellulosic biomass for bio-ethanol production. Biofuels. doi:10.1080/17597269.2016.1193837

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649. doi:10.1007/s002530100710

    Article  CAS  PubMed  Google Scholar 

  • Scott BR, Hill C, Tomashek J, Liu C (2009) Enzymatic hydrolysis of lignocellulosic feedstocks using accessory enzymes. United States Patent Application-0061484

    Google Scholar 

  • Sprey B, Lambert C (1983) Titration curves of cellulases from Trichoderma reesei: demonstration of a cellulase xylanase glucosidase containing complex. FEMS Microbiol Lett 18:217–222. doi:10.1111/j.1574-6968.1983.tb00481.x

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production. Bioresour Technol 83:1–11. doi:10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals. Recent developments. Catalysts 2:244–263. doi:10.3390/catal2020244

    Article  CAS  Google Scholar 

  • Teeri T (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167. doi:10.1016/S0167-7799(97)01032-9

    Article  Google Scholar 

  • Teeri T, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones T (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178. doi:10.1042/bst0260173

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira De Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  CAS  PubMed  Google Scholar 

  • Tolan JS, Foody B (1999) Cellulases from submerged fermentation. Adv Biochem Eng Biotechnol 65:41–67. doi:10.1007/3-540-49194-5_3

    CAS  Google Scholar 

  • Varrot A, Frandsen TP, von Ossowski I, Boyer V, Cottaz S, Driguez H, Sculein M, Davies GJ (2003) Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure 11:855–864. doi:10.1016/S0969-2126(03)00124-2

    Article  CAS  PubMed  Google Scholar 

  • Walker L, Wilson D (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36:3–14. doi:10.1016/0960-8524(91)90095-2

    Article  CAS  Google Scholar 

  • Wang Y, Tang R, Tao J, Gao G, Wang X, Mu Y, Feng Y (2011) Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Appl Microbiol Biotechnol 91:1353–1363. doi:10.1007/s00253-011-3421-1

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297. doi:10.1196/annals.1419.026

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299. doi:10.1016/j.copbio.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  • Woodward J (1991) Synergism in cellulase systems. Bioresour Technol 36:67–75. doi:10.1016/0960-8524(91)90100-X

    Article  CAS  Google Scholar 

  • Yang H, Wei H, Ma G, Antunes MS, Vogt S, Cox J, Zhang X, Liu X, Bu L, Gleber SC, Carpita NC (2016) Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice. Plant Biotechnol J 14:1998–2000. doi:10.1111/pbi.12557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems. Biotechnol Bioeng 88:797–824. doi:10.1002/bit.20282.

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Chen H, Xu Y (2010) GASdb: a large-scale and comparative exploration database of glycosyl hydrolysis systems. BMC Microbiol 10:69. doi:10.1186/1471-2180-10-69

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103:715–724. doi:10.1002/bit.22307

    Article  CAS  PubMed  Google Scholar 

  • Zverlov VV, Volkov IY, Lunina NA, Velikodvorskaya GA (1999) Enzymes of thermophilic anaerobic bacteria hydrolyzing cellulose, xylan, and other b-glucans. J Mol Biol 33:89–95

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reiaz Ul Rehman or Manoj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pirzadah, T.B., Malik, B., Rehman, R.U., Kumar, M. (2017). Cellulases: Industrial Workhorse in Bioenergy Sector. In: Kalia, V., Saini, A. (eds) Metabolic Engineering for Bioactive Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-5511-9_7

Download citation

Publish with us

Policies and ethics