Skip to main content

Abstract

Renal failure has been defined functionally, and the term acute kidney injury (AKI) has been coined to describe progressive grades of functional abnormality. AKI is common in critically ill patients with sepsis. Recognition of possible AKI is important as it must be accompanied by measurement of creatinine clearance to facilitate appropriate antibacterial dosing in critically ill septic patients. Conversely, awareness of the increased incidence of augmented renal clearance in subgroups of critically ill patients (e.g., resuscitated trauma, major surgical and burns patients) should lead to confirmatory measurement of creatinine clearance, and if indicated, dose adjustment. In addition, sepsis and AKI are associated with marked physiological alterations that are often associated with unrecognized pharmacokinetic changes. A thorough understanding of pharmacokinetic principles and organ function in the critically ill patients with AKI is required to guide appropriate dosing, both experimantally and in clinical practice. This pharmacokinetic knowedge should be utilised to achieve appropriate pharmacodynamic targets. A method of individualized antibacterial dosing, based on a dataset derived from published data in the critically ill receiving, is proposed whereby the patient’s dose should be derived from a dataset chosen by matching as far as possible the severity of illness, organ failure, and modes of support used. The use of therapeutic drug monitoring (TDM) informed by population-based pharmacokinetic (PK) data in critically ill patients offers further promise for the optimization of antibacterial dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simsek A, Tugcu V, Tasci AI (2013) New biomarkers for the quick detection of acute kidney injury. ISRN Nephrol 2013:394582. doi:10.5402/2013/394582

    Article  PubMed  CAS  Google Scholar 

  2. Bellomo R, Ronco C, Kellum JA et al (2004) Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8(4):R204–R212. doi:10.1186/cc2872

    Article  PubMed  PubMed Central  Google Scholar 

  3. Levin A, Warnock DG, Mehta RL et al (2007) Improving outcomes from acute kidney injury: report of an initiative. Am J Kidney Dis 50(1):1–4. doi:10.1053/j.ajkd.2007.05.008

    Article  PubMed  Google Scholar 

  4. Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31. doi:10.1186/cc5713

    Article  PubMed  PubMed Central  Google Scholar 

  5. Molitoris BA, Levin A, Warnock DG et al (2007) Improving outcomes from acute kidney injury. J Am Soc Nephrol 18(7):1992–1994. doi:10.1681/ASN.2007050567

    Article  CAS  PubMed  Google Scholar 

  6. Kidney Disease: Improving Global Outcome (KDIGO) Acute Kidney Injury Work Group (2011) Section 2: AKI definition (2012) Kidney Int Suppl 2(1):19–36. doi:10.1038/kisup.2011.32

  7. Keller F, Maiga M, Neumayer HH et al (1984) Pharmacokinetic effects of altered plasma protein binding of drugs in renal disease. Eur J Drug Metab Pharmacokinet 9(3):275–282

    Article  CAS  PubMed  Google Scholar 

  8. Hoste EA, Damen J, Vanholder RC et al (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20(4):747–753. doi:10.1093/ndt/gfh707

    Article  CAS  PubMed  Google Scholar 

  9. Baumann TJ, Staddon JE, Horst HM et al (1987) Minimum urine collection periods for accurate determination of creatinine clearance in critically ill patients. Clin Pharm 6(5):393–398

    CAS  PubMed  Google Scholar 

  10. Liangos O, Wald R, O’Bell JW et al (2006) Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol 1(1):43–51. doi:10.2215/CJN.00220605

    Article  PubMed  Google Scholar 

  11. Bagshaw SM, George C, Bellomo R et al (2008) Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 12(2):R47. doi:10.1186/cc6863

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bagshaw SM, Uchino S, Bellomo R et al (2007) Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2(3):431–439. doi:10.2215/CJN.03681106

    Article  PubMed  Google Scholar 

  13. Douma CE, Redekop WK, van der Meulen JH et al (1997) Predicting mortality in intensive care patients with acute renal failure treated with dialysis. J Am Soc Nephrol 8(1):111–117

    CAS  PubMed  Google Scholar 

  14. Metnitz PG, Krenn CG, Steltzer H et al (2002) Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30(9):2051–2058. doi:10.1097/01.CCM.0000026732.62103.DF

    Article  PubMed  Google Scholar 

  15. Riedemann NC, Guo RF, Ward PA (2003) The enigma of sepsis. J Clin Invest 112(4):460–467. doi:10.1172/JCI19523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoste EA, Bagshaw SM, Bellomo R et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41(8):1411–1423. doi:10.1007/s00134-015-3934-7

    Article  PubMed  Google Scholar 

  17. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294(7):813–818. doi:10.1001/jama.294.7.813

    Article  CAS  PubMed  Google Scholar 

  18. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637. doi:10.1097/CCM.0b013e31827e83af

    Article  PubMed  Google Scholar 

  19. Bagshaw SM, Cruz DN, Gibney RT et al (2009a) A proposed algorithm for initiation of renal replacement therapy in adult critically ill patients. Crit Care 13(6):317. doi:10.1186/cc8037

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bagshaw SM, Uchino S, Bellomo R et al (2009b) Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. J Crit Care 24(1):129–140. doi:10.1016/j.jcrc.2007.12.017

    Article  PubMed  Google Scholar 

  21. Gaudry S, Hajage D, Schortgen F et al (2016) Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. doi:10.1056/NEJMoa1603017

  22. Liu KD, Himmelfarb J, Paganini E et al (2006) Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 1(5):915–919. doi:10.2215/CJN.01430406

    Article  CAS  PubMed  Google Scholar 

  23. Kidney Disease: Improving Global Outcome (KDIGO) Acute Kidney Injury Work Group (2011) Section 5: Dialysis interventions for treatment of (2012) Kidney Int Suppl 2(1):89–115. doi:10.1038/kisup.2011.35

  24. Bell M, Swing GF et al (2007) Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med 33(5):773–780. doi:10.1007/s00134-007-0590-6

    Article  PubMed  Google Scholar 

  25. Prowle JR, Bellomo R (2010) Continuous renal replacement therapy: recent advances and future research. Nat Rev Nephrol 6(9):521–529. doi:10.1038/nrneph.2010.100

    Article  PubMed  Google Scholar 

  26. Schneider AG, Bellomo R, Bagshaw SM et al (2013) Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 39(6):987–997. doi:10.1007/s00134-013-2864-5

    Article  CAS  PubMed  Google Scholar 

  27. Uchino S, Bellomo R, Kellum JA et al (2007) Patient and kidney survival by dialysis modality in critically ill patients with acute kidney injury. Int J Artif Organs 30(4):281–292

    CAS  PubMed  Google Scholar 

  28. Fieghen HE, Friedrich JO, Burns KE et al (2010) The hemodynamic tolerability and feasibility of sustained low efficiency dialysis in the management of critically ill patients with acute kidney injury. BMC Nephrol 11:32. doi:10.1186/1471-2369-11-32

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baldwin I, Naka T, Koch B et al (2007) A pilot randomised controlled comparison of continuous veno-venous haemofiltration and extended daily dialysis with filtration: effect on small solutes and acid-base balance. Intensive Care Med 33(5):830–835. doi:10.1007/s00134-007-0596-0

    Article  CAS  PubMed  Google Scholar 

  30. Ricci Z, Ronco C (2008) Dose and efficiency of renal replacement therapy: continuous renal replacement therapy versus intermittent hemodialysis versus slow extended daily dialysis. Crit Care Med 36(4 Suppl):S229–S237. doi:10.1097/CCM.0b013e318168e467

    Article  CAS  PubMed  Google Scholar 

  31. Bugge JF (2001) Pharmacokinetics and drug dosing adjustments during continuous venovenous hemofiltration or hemodiafiltration in critically ill patients. Acta Anaesthesiol Scand 45(8):929–934

    Article  CAS  PubMed  Google Scholar 

  32. Pinder M, Bellomo R, Lipman J (2002) Pharmacological principles of antibiotic prescription in the critically ill. Anaesth Intensive Care 30(2):134–144

    CAS  PubMed  Google Scholar 

  33. Buerger C, Plock N, Dehghanyar P et al (2006) Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother 50(7):2455–2463. doi:10.1128/AAC.01468-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conil JM, Georges B, Breden A et al (2006) Increased amikacin dosage requirements in burn patients receiving a once-daily regimen. Int J Antimicrob Agents 28(3):226–230. doi:10.1016/j.ijantimicag.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  35. Goncalves-Pereira J, Povoa P (2011) Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care 15(5):R206. doi:10.1186/cc10441

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marik PE (1993) Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 21(2):172–173

    CAS  PubMed  Google Scholar 

  37. Roberts JA, Taccone FS, Udy AA et al (2011b) Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother 55(6):2704–2709. doi:10.1128/AAC.01708-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sime FB, Roberts MS, Peake SL et al (2012) Does beta-lactam pharmacokinetic variability in critically Ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care 2(1):35. doi:10.1186/2110-5820-2-35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gous A, Lipman J, Scribante J et al (2005) Fluid shifts have no influence on ciprofloxacin pharmacokinetics in intensive care patients with intra-abdominal sepsis. Int J Antimicrob Agents 26(1):50–55. doi:10.1016/j.ijantimicag.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  40. Akers KS, Cota JM, Frei CR et al (2011) Once-daily amikacin dosing in burn patients treated with continuous venovenous hemofiltration. Antimicrob Agents Chemother 55(10):4639–4642. doi:10.1128/AAC.00374-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taccone FS, de Backer D, Laterre PF et al (2011) Pharmacokinetics of a loading dose of amikacin in septic patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents 37(6):531–535. doi:10.1016/j.ijantimicag.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  42. Hayashi Y, Roberts JA, Paterson DL et al (2010) Pharmacokinetic evaluation of piperacillin-tazobactam. Expert Opin Drug Metab Toxicol 6(8):1017–1031. doi:10.1517/17425255.2010.506187

    Article  CAS  PubMed  Google Scholar 

  43. Joynt GM, Lipman J, Gomersall CD et al (2001) The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 47(4):421–429

    Article  CAS  PubMed  Google Scholar 

  44. Seyler L, Cotton F, Taccone FS et al (2011) Recommended beta-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care 15(3):R137. doi:10.1186/cc10257

    Article  PubMed  PubMed Central  Google Scholar 

  45. Young RJ, Lipman J, Gin T et al (1997) Intermittent bolus dosing of ceftazidime in critically ill patients. J Antimicrob Chemother 40(2):269–273

    Article  CAS  PubMed  Google Scholar 

  46. Chapuis TM, Giannoni E, Majcherczyk PA et al (2010) Prospective monitoring of cefepime in intensive care unit adult patients. Crit Care 14(2):R51. doi:10.1186/cc8941

    Article  PubMed  PubMed Central  Google Scholar 

  47. Giuliano C, Haase KK, Hall R (2010) Use of vancomycin pharmacokinetic-pharmacodynamic properties in the treatment of MRSA infections. Expert Rev Anti Infect Ther 8(1):95–106. doi:10.1586/eri.09.123

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rybak MJ (2006) The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 42(Suppl 1):S35–S39. doi:10.1086/491712

    Article  CAS  PubMed  Google Scholar 

  49. DelDot ME, Lipman J, Tett SE (2004) Vancomycin pharmacokinetics in critically ill patients receiving continuous venovenous haemodiafiltration. Br J Clin Pharmacol 58(3):259–268. doi:10.1111/j.1365-2125.2004.02143.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberts DM, Liu X, Roberts JA et al (2015) A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit Care 19:84. doi:10.1186/s13054-015-0818-8

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vance-Bryan K, Guay DR, Rotschafer JC (1990) Clinical pharmacokinetics of ciprofloxacin. Clin Pharmacokinet 19(6):434–461. doi:10.2165/00003088-199019060-00003

    Article  CAS  PubMed  Google Scholar 

  52. Lipman J, Scribante J, Gous AG et al (1998) Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. The Baragwanath Ciprofloxacin Study Group. Antimicrob Agents Chemother 42(9):2235–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Szalek E, Tomczak H, Kaminska A et al (2012) Pharmacokinetics and pharmacodynamics of ciprofloxacin in critically ill patients after the first intravenous administration of 400 mg. Adv Med Sci 57(2):217–223. doi:10.2478/v10039-012-0028-4

    Article  CAS  PubMed  Google Scholar 

  54. Malone RS, Fish DN, Abraham E et al (2001) Pharmacokinetics of levofloxacin and ciprofloxacin during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother 45(10):2949–2954. doi:10.1128/aac.45.10.2949-2954.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spooner AM, Deegan C, D’Arcy DM et al (2011) An evaluation of ciprofloxacin pharmacokinetics in critically ill patients undergoing continuous veno-venous haemodiafiltration. BMC Clin Pharmacol 11:11. doi:10.1186/1472-6904-11-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wallis SC, Mullany DV, Lipman J et al (2001) Pharmacokinetics of ciprofloxacin in ICU patients on continuous veno-venous haemodiafiltration. Intensive Care Med 27(4):665–672

    Article  CAS  PubMed  Google Scholar 

  57. Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328(20):1471–1477. doi:10.1056/NEJM199305203282008

    Article  CAS  PubMed  Google Scholar 

  58. Di Giantomasso D, May CN, Bellomo R (2003) Norepinephrine and vital organ blood flow during experimental hyperdynamic sepsis. Intensive Care Med 29(10):1774–1781. doi:10.1007/s00134-003-1736-9

    Article  PubMed  Google Scholar 

  59. Parrillo JE, Parker MM, Natanson C et al (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113(3):227–242

    Article  CAS  PubMed  Google Scholar 

  60. Udy AA, Roberts JA, Boots RJ et al (2010) Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 49(1):1–16. doi:10.2165/11318140-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  61. Chvojka J, Sykora R, Krouzecky A et al (2008) Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care 12(6):R164. doi:10.1186/cc7164

    Article  PubMed  PubMed Central  Google Scholar 

  62. Langenberg C, Wan L, Egi M et al (2006) Renal blood flow in experimental septic acute renal failure. Kidney Int 69(11):1996–2002. doi:10.1038/sj.ki.5000440

    Article  CAS  PubMed  Google Scholar 

  63. Gomez H, Ince C, De Backer D et al (2014) A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41(1):3–11. doi:10.1097/SHK.0000000000000052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Honore PM, Jacobs R, Hendrickx I et al (2015) Prevention and treatment of sepsis-induced acute kidney injury: an update. Ann Intensive Care 5(1):51. doi:10.1186/s13613-015-0095-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. De Paepe P, Belpaire FM, Buylaert WA (2002) Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock. Clin Pharmacokinet 41(14):1135–1151. doi:10.2165/00003088-200241140-00002

    Article  PubMed  Google Scholar 

  66. Rayner CR, Forrest A, Meagher AK et al (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42(15):1411–1423. doi:10.2165/00003088-200342150-00007

    Article  CAS  PubMed  Google Scholar 

  67. Roberts DM, Roberts JA, Roberts MS et al (2012b) Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 40(5):1523–1528. doi:10.1097/CCM.0b013e318241e553

    Article  CAS  PubMed  Google Scholar 

  68. Roberts JA, Norris R, Paterson DL et al (2012a) Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 73(1):27–36. doi:10.1111/j.1365-2125.2011.04080.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roberts JA, Kruger P, Paterson DL et al (2008) Antibiotic resistance--what's dosing got to do with it? Crit Care Med 36(8):2433–2440. doi:10.1097/CCM.0b013e318180fe62

    Article  CAS  PubMed  Google Scholar 

  70. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10. quiz 11–12

    Article  CAS  PubMed  Google Scholar 

  71. Burgess DS (1999) Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance. Chest 115(3 Suppl):19S–23S

    Article  CAS  PubMed  Google Scholar 

  72. Lipman J, Gomersall CD, Gin T et al (1999) Continuous infusion ceftazidime in intensive care: a randomized controlled trial. J Antimicrob Chemother 43(2):309–311

    Article  CAS  PubMed  Google Scholar 

  73. Mouton JW, Vinks AA (2007) Continuous infusion of beta-lactams. Curr Opin Crit Care 13(5):598–606. doi:10.1097/MCC.0b013e3282e2a98f

    Article  PubMed  Google Scholar 

  74. Roberts JA, Boots R, Rickard CM et al (2007) Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J Antimicrob Chemother 59(2):285–291. doi:10.1093/jac/dkl478

    Article  CAS  PubMed  Google Scholar 

  75. Roberts JA, Webb S, Paterson D et al (2009) A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 37(6):2071–2078. doi:10.1097/CCM.0b013e3181a0054d

    Article  CAS  PubMed  Google Scholar 

  76. Tessier PR, Nicolau DP, Onyeji CO et al (1999) Pharmacodynamics of intermittent- and continuous-infusion cefepime alone and in combination with once-daily tobramycin against Pseudomonas aeruginosa in an in vitro infection model. Chemotherapy 45(4):284–295. doi:10.1159/000007198

    Article  CAS  PubMed  Google Scholar 

  77. Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155(1):93–99

    Article  CAS  PubMed  Google Scholar 

  78. Roberts JA, Lipman J (2006) Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 45(8):755–773. doi:10.2165/00003088-200645080-00001

    Article  CAS  PubMed  Google Scholar 

  79. Rybak MJ, Abate BJ, Kang SL et al (1999) Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 43(7):1549–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Drusano GL, Preston SL, Fowler C et al (2004) Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 189(9):1590–1597. doi:10.1086/383320

    Article  CAS  PubMed  Google Scholar 

  81. Forrest A, Nix DE, Ballow CH et al (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37(5):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rybak M, Lomaestro B, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66(1):82–98. doi:10.2146/ajhp080434

    Article  CAS  PubMed  Google Scholar 

  83. Oda S, Hirasawa H, Shiga H et al (2002) Continuous hemofiltration/hemodiafiltration in critical care. Ther Apher 6(3):193–198

    Article  PubMed  Google Scholar 

  84. Ronco C, Bellomo R, Ricci Z (2001) Continuous renal replacement therapy in critically ill patients. Nephrol Dial Transplant 16(Suppl 5):67–72

    Article  PubMed  Google Scholar 

  85. Uchino S, Bellomo R, Ronco C (2001) Intermittent versus continuous renal replacement therapy in the ICU: impact on electrolyte and acid-base balance. Intensive Care Med 27(6):1037–1043

    Article  CAS  PubMed  Google Scholar 

  86. Brunet S, Leblanc M, Geadah D et al (1999) Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. Am J Kidney Dis 34(3):486–492. doi:10.1053/AJKD03400486

    Article  CAS  PubMed  Google Scholar 

  87. Clark WR, Ronco C (1999) CRRT efficiency and efficacy in relation to solute size. Kidney Int Suppl 72:S3–S7

    Article  CAS  Google Scholar 

  88. Golper TA, Marx MA (1998) Drug dosing adjustments during continuous renal replacement therapies. Kidney Int Suppl 66:S165–S168

    CAS  PubMed  Google Scholar 

  89. Guenter SG, Iven H, Boos C et al (2002) Pharmacokinetics of levofloxacin during continuous venovenous hemodiafiltration and continuous venovenous hemofiltration in critically ill patients. Pharmacotherapy 22(2):175–183

    Article  CAS  PubMed  Google Scholar 

  90. Hansen E, Bucher M, Jakob W et al (2001) Pharmacokinetics of levofloxacin during continuous veno-venous hemofiltration. Intensive Care Med 27(2):371–375

    Article  CAS  PubMed  Google Scholar 

  91. Traunmuller F, Thalhammer-Scherrer R, Locker GJ et al (2001) Single-dose pharmacokinetics of levofloxacin during continuous veno-venous haemofiltration in critically ill patients. J Antimicrob Chemother 47(2):229–231

    Article  CAS  PubMed  Google Scholar 

  92. Phillips GJ, Davies JG, Olliff CJ et al (1998) Use of in vitro models of haemofiltration and haemodiafiltration to estimate dosage regimens for critically ill patients prescribed cefpirome. J Clin Pharm Ther 23(5):353–359

    Article  CAS  PubMed  Google Scholar 

  93. Uchino S, Cole L, Morimatsu H et al (2002) Clearance of vancomycin during high-volume haemofiltration: impact of pre-dilution. Intensive Care Med 28(11):1664–1667

    Article  PubMed  Google Scholar 

  94. Bohler J, Donauer J, Keller F (1999) Pharmacokinetic principles during continuous renal replacement therapy: drugs and dosage. Kidney Int Suppl 72:S24–S28

    Article  CAS  Google Scholar 

  95. Troyanov S, Cardinal J, Geadah D et al (2003) Solute clearances during continuous venovenous haemofiltration at various ultrafiltration flow rates using multiflow-100 and HF1000 filters. Nephrol Dial Transplant 18(5):961–966

    Article  PubMed  Google Scholar 

  96. Choi G, Gomersall CD, Lipman J et al (2004) The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration an in vitro study of levofloxacin. Int J Antimicrob Agents 24(5):468–472. doi:10.1016/j.ijantimicag.2004.06.005

    CAS  PubMed  Google Scholar 

  97. Tegeder I, Neumann F, Bremer F et al (1999) Pharmacokinetics of meropenem in critically ill patients with acute renal failure undergoing continuous venovenous hemofiltration. Clin Pharmacol Ther 65(1):50–57. doi:10.1016/s0009-9236(99)70121-9

    Article  CAS  PubMed  Google Scholar 

  98. Thalhammer F, Schenk P, Burgmann H et al (1998) Single-dose pharmacokinetics of meropenem during continuous venovenous hemofiltration. Antimicrob Agents Chemother 42(9):2417–2420

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Beumier M, Casu GS, Hites M et al (2014) beta-lactam antibiotic concentrations during continuous renal replacement therapy. Crit Care 18(3):R105. doi:10.1186/cc13886

    Article  PubMed  PubMed Central  Google Scholar 

  100. Roberts JA, De Waele JJ, Dimopoulos G et al (2012b) DALI: Defining Antibiotic Levels in Intensive care unit patients: a multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic. BMC Infect Dis 12:152. doi:10.1186/1471-2334-12-152

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ulldemolins M, Vaquer S, Llaurado-Serra M et al (2014) Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit Care 18(3):227. doi:10.1186/cc13938

    Article  PubMed  PubMed Central  Google Scholar 

  102. Goldstein SL, Nolin TD (2014) Lack of drug dosing guidelines for critically ill patients receiving continuous renal replacement therapy. Clin Pharmacol Ther 96(2):159–161. doi:10.1038/clpt.2014.102

    Article  CAS  PubMed  Google Scholar 

  103. Jamal JA, Mueller BA, Choi GY et al (2015) How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn Microbiol Infect Dis 82(1):92–103. doi:10.1016/j.diagmicrobio.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  104. Roberts JA, Roberts DM (2014) Antibiotic dosing in critically ill patients with septic shock and on continuous renal replacement therapy: can we resolve this problem with pharmacokinetic studies and dosing guidelines? Crit Care 18(3):156. doi:10.1186/cc13939

    Article  PubMed  PubMed Central  Google Scholar 

  105. de Pont AC (2007) Extracorporeal treatment of intoxications. Curr Opin Crit Care 13(6):668–673. doi:10.1097/MCC.0b013e3282f0febd

    Article  PubMed  Google Scholar 

  106. Kubin C (2005) The effects of continuous renal replacement on anti-infective therapy in the critically Ill. J Pharm Pract 18(2):109–117. doi:10.1177/0897190004273596

    Article  Google Scholar 

  107. Chow AT, Fowler C, Williams RR et al (2001) Safety and pharmacokinetics of multiple 750-milligram doses of intravenous levofloxacin in healthy volunteers. Antimicrob Agents Chemother 45(7):2122–2125. doi:10.1128/AAC.45.7.2122-2125.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gonzalez MA, Moranchel AH, Duran S et al (1985) Multiple-dose ciprofloxacin dose ranging and kinetics. Clin Pharmacol Ther 37(6):633–637

    Article  CAS  PubMed  Google Scholar 

  109. Hawker F (1991) Liver dysfunction in critical illness. Anaesth Intensive Care 19(2):165–181

    CAS  PubMed  Google Scholar 

  110. Rolando N, Wade J, Davalos M et al (2000) The systemic inflammatory response syndrome in acute liver failure. Hepatology 32(4 Pt 1):734–739. doi:10.1053/jhep.2000.17687

    Article  CAS  PubMed  Google Scholar 

  111. Schetz M, Ferdinande P, Van den Berghe G et al (1995) Pharmacokinetics of continuous renal replacement therapy. Intensive Care Med 21(7):612–620

    Article  CAS  PubMed  Google Scholar 

  112. Choi G, Gomersall CD, Tian Q et al (2009) Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med 37(7):2268–2282. doi:10.1097/CCM.0b013e3181aab3d0

    Article  CAS  PubMed  Google Scholar 

  113. Abdul-Aziz MH, Sulaiman H, Mat-Nor MB et al (2016) Beta-lactam infusion in severe sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. doi:10.1007/s00134-015-4188-0

  114. Thalhammer F, Horl WH (2000) Pharmacokinetics of meropenem in patients with renal failure and patients receiving renal replacement therapy. Clin Pharmacokinet 39(4):271–279. doi:10.2165/00003088-200039040-00003

    Article  CAS  PubMed  Google Scholar 

  115. Benvenuto M, Benziger DP, Yankelev S et al (2006) Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 50(10):3245–3249. doi:10.1128/AAC.00247-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Honore PM, Jacobs R, De Regt J et al (2014) Colistin dosing for treatment of multidrug-resistant Pseudomonas in critically ill patients - please, be adequate! Crit Care 18(2):412. doi:10.1186/cc13747

    Article  PubMed  PubMed Central  Google Scholar 

  117. Awdishu L, Bouchard J (2011) How to optimize drug delivery in renal replacement therapy. Semin Dial 24(2):176–182. doi:10.1111/j.1525-139X.2011.00826.x

    Article  PubMed  Google Scholar 

  118. Moriyama B, Henning SA, Neuhauser MM et al (2009) Continuous-infusion beta-lactam antibiotics during continuous venovenous hemofiltration for the treatment of resistant gram-negative bacteria. Ann Pharmacother 43(7):1324–1337. doi:10.1345/aph.1L638

    Article  CAS  PubMed  Google Scholar 

  119. Yamamoto T, Yasuno N, Katada S et al (2011) Proposal of a pharmacokinetically optimized dosage regimen of antibiotics in patients receiving continuous hemodiafiltration. Antimicrob Agents Chemother 55(12):5804–5812. doi:10.1128/aac.01758-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ohchi Y, Hidaka S, Goto K et al (2011) Effect of hemopurification rate on doripenem pharmacokinetics in critically ill patients receiving high-flow continuous hemodiafiltration. Yakugaku Zasshi 131(9):1395–1399

    Article  CAS  PubMed  Google Scholar 

  121. Bauer SR, Salem C, Connor MJ Jr et al (2012) Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol 7(3):452–457. doi:10.2215/CJN.10741011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Covajes C, Scolletta S, Penaccini L et al (2013) Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy. Int J Antimicrob Agents 41(3):261–266. doi:10.1016/j.ijantimicag.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  123. Jamal JA, Udy AA, Lipman J et al (2014) The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens*. Crit Care Med 42(7):1640–1650. doi:10.1097/CCM.0000000000000317

    Article  PubMed  Google Scholar 

  124. Udy AA, Covajes C, Taccone FS et al (2013) Can population pharmacokinetic modelling guide vancomycin dosing during continuous renal replacement therapy in critically ill patients? Int J Antimicrob Agents 41(6):564–568. doi:10.1016/j.ijantimicag.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  125. Roberts JA, Mehta RL, Lipman J (2011a) Sustained low efficiency dialysis allows rational renal replacement therapy, but does it allow rational drug dosing? Crit Care Med 39(3):602–603. doi:10.1097/CCM.0b013e31820e6a0d

    Article  PubMed  Google Scholar 

  126. Heintz BH, Matzke GR, Dager WE (2009) Antimicrobial dosing concepts and recommendations for critically III adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy 29(5):562–577

    Article  CAS  PubMed  Google Scholar 

  127. Ronco C, Ricci Z, De Backer D et al (2015) Renal replacement therapy in acute kidney injury: controversy and consensus. Crit Care 19:146. doi:10.1186/s13054-015-0850-8

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bogard KN, Peterson NT, Plumb TJ et al (2011) Antibiotic dosing during sustained low-efficiency dialysis: special considerations in adult critically ill patients. Crit Care Med 39(3):560–570. doi:10.1097/CCM.0b013e318206c3b2

    Article  CAS  PubMed  Google Scholar 

  129. Wong G, Sime FB, Lipman J et al (2014b) How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis 14:288. doi:10.1186/1471-2334-14-288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Roberts JA, Abdul-Aziz MH, Lipman J et al (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14(6):498–509. doi:10.1016/S1473-3099(14)70036-2

    Article  PubMed  PubMed Central  Google Scholar 

  131. Roberts JA, Choi GY, Joynt GM et al (2016) SaMpling Antibiotics in Renal Replacement Therapy (SMARRT): an observational pharmacokinetic study in critically ill patients. BMC Infect Dis 16:103. doi:10.1186/s12879-016-1421-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Wong G, Brinkman A, Benefield RJ et al (2014a) An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother 69(5):1416–1423. doi:10.1093/jac/dkt523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Y. S. Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Choi, G.Y.S., Joynt, G.M. (2018). Acute Kidney Injury and Renal Replacement Therapy. In: Udy, A., Roberts, J., Lipman, J. (eds) Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Adis, Singapore. https://doi.org/10.1007/978-981-10-5336-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5336-8_6

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-10-5335-1

  • Online ISBN: 978-981-10-5336-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics