Disease Spreading in Time-Evolving Networked Communities

  • Jorge M. Pacheco
  • Sven Van Segbroeck
  • Francisco C. Santos
Chapter
Part of the Theoretical Biology book series (THBIO)

Abstract

Human communities are organized in complex webs of contacts that may be represented by a graph or network. In this graph, vertices identify individuals and edges establish the existence of some type of relations between them. In real communities, the possible edges may be active or not for variable periods of time. These so-called temporal networks typically result from an endogenous social dynamics, usually coupled to the process under study taking place in the community. For instance, disease spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to reconsider maintaining or not their social contacts. Here we investigate the impact of such a dynamical network structure on disease dynamics, where infection occurs along the edges of the network. To this end, we define an endogenous network dynamics coupled with disease spreading. We show that the effective infectiousness of a disease taking place along the edges of this temporal network depends on the population size, the number of infected individuals in the population and the capacity of healthy individuals to sever contacts with the infected, ultimately dictated by availability of information regarding each individual’s health status. Importantly, we also show how dynamical networks strongly decrease the average time required to eradicate a disease.

Notes

Acknowledgements

This research was supported by FCT-Portugal through grants PTDC/EEI-SII/5081/2014, PTDC/MAT/STA/3358/2014, UID/BIA/04050/2013 and UID/CEC/50021/2013.

References

  1. 1.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)MATHGoogle Scholar
  2. 2.
    Anderson, R.M., May, R.M.: Infectious Diseases in Humans. Oxford University Press, Oxford (1992)Google Scholar
  3. 3.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes in Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton/Oxford (1999)MATHGoogle Scholar
  7. 7.
    Lloyd, A.L., May, R.M.: Epidemiology. How viruses spread among computers and people. Science. 292(5520), 1316–1317 (2001)CrossRefGoogle Scholar
  8. 8.
    Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Epidemic spreading and cooperation dynamics on homogeneous small-world networks. Phys. Rev. E. 72(5 Pt 2), 056128 (2005)CrossRefGoogle Scholar
  9. 9.
    May, R.M.: Network structure and the biology of populations. Trends Ecol. Evol. 21(7), 394–399 (2006)CrossRefGoogle Scholar
  10. 10.
    Mastrandrea, R., Barrat, A.: How to estimate epidemic risk from incomplete contact diaries data? PLoS Comput. Biol. 12(6), e1005002 (2016)CrossRefGoogle Scholar
  11. 11.
    Kiti, M.C., Tizzoni, M., Kinyanjui, T.M., Koech, D.C., Munywoki, P.K., Meriac, M., Cappa, L., Panisson, A., Barrat, A., Cattuto, C.: Quantifying social contacts in a household setting of rural Kenya using wearable proximity sensors. EPJ Data Sci. 5(1), 21 (2016)CrossRefGoogle Scholar
  12. 12.
    Fournet, J., Barrat, A.: Epidemic risk from friendship network data: an equivalence with a non-uniform sampling of contact networks. Sci. Rep. 6, 24593 (2016)CrossRefGoogle Scholar
  13. 13.
    Merler, S., Ajelli, M., Fumanelli, L., Gomes, M.F., y Piontti, A.P., Rossi, L., Chao, D.L., Longini, I.M., Halloran, M.E., Vespignani, A.: Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect. Dis. 15(2), 204–211 (2015)CrossRefGoogle Scholar
  14. 14.
    Holme, P., Masuda, N.: The basic reproduction number as a predictor for epidemic outbreaks in temporal networks. PLoS One. 10(3), e0120567 (2015)CrossRefGoogle Scholar
  15. 15.
    Holme, P.: Information content of contact-pattern representations and predictability of epidemic outbreaks. Sci. Rep. 5, 14462 (2015)CrossRefGoogle Scholar
  16. 16.
    Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)CrossRefGoogle Scholar
  17. 17.
    Salathé, M., Freifeld, C.C., Mekaru, S.R., Tomasulo, A.F., Brownstein, J.S.: Influenza A (H7N9) and the importance of digital epidemiology. N. Engl. J. Med. 369(5), 401 (2013)CrossRefGoogle Scholar
  18. 18.
    Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000 prime reports. 5, 6 (2013)Google Scholar
  19. 19.
    Goltsev, A.V., Dorogovtsev, S.N., Oliveira, J.G., Mendes, J.F.F.: Localization and spreading of diseases in complex networks. Phys. Rev. Lett. 109(12), 128702 (2012)CrossRefGoogle Scholar
  20. 20.
    Swinburn, B.A., Sacks, G., Hall, K.D., McPherson, K., Finegood, D.T., Moodie, M.L., Gortmaker, S.L.: The global obesity pandemic: shaped by global drivers and local environments. Lancet. 378(9793), 804–814 (2011)CrossRefGoogle Scholar
  21. 21.
    Salathé, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.: A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. U. S. A. 107(51), 22020–22025 (2010)CrossRefGoogle Scholar
  22. 22.
    Salathé, M., Jones, J.H.: Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6(4), e1000736 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Funk, S., Salathé, M., Jansen, V.A.: Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface. 7(50), 1247–1256 (2010)CrossRefGoogle Scholar
  24. 24.
    Masuda, N., Lambiotte, R.: A Guide to Temporal Networks, vol. 4. World Scientific, London (2016)CrossRefMATHGoogle Scholar
  25. 25.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)CrossRefGoogle Scholar
  26. 26.
    Barrat, A., Cattuto, C., Colizza, V., Gesualdo, F., Isella, L., Pandolfi, E., Pinton, J.-F., Ravà, L., Rizzo, C., Romano, M.: Empirical temporal networks of face-to-face human interactions. EPJ ST. 222(6), 1295–1309 (2013)Google Scholar
  27. 27.
    Lee, S., Rocha, L.E., Liljeros, F., Holme, P.: Exploiting temporal network structures of human interaction to effectively immunize populations. PLoS One. 7(5), e36439 (2012)CrossRefGoogle Scholar
  28. 28.
    Van Segbroeck, S., Santos, F.C., Pacheco, J.M.: Adaptive contact networks change effective disease infectiousness and dynamics. PLoS Comput. Biol. 6(8), e1000895 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schwartz, I.B., Shaw, L.B.: Rewiring for adaptation. Physics. 3(17), (2010)Google Scholar
  30. 30.
    Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Adaptive networks: coevolution of disease and topology. Phys. Rev. E. 82(3), (2010)Google Scholar
  31. 31.
    Funk, S., Gilad, E., Jansen, V.A.A.: Endemic disease, awareness, and local behavioural response. J. Theor. Biol. 264, 501–509 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Risau-Gusman, S., Zanette, D.H.: Contact switching as a control strategy for epidemic outbreaks. J. Theor. Biol. 257, 52–60 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Funk, S., Gilad, E., Watkins, C., Jansen, V.A.: The spread of awareness and its impact on epidemic outbreaks. Proc. Natl. Acad. Sci. U. S. A. 106(16), 6872–6877 (2009)CrossRefMATHGoogle Scholar
  34. 34.
    Zanette, D.H., Risau-Gusman, S.: Infection spreading in a population with evolving contacts. J. Biol. Phys. 34, 135–148 (2008)CrossRefGoogle Scholar
  35. 35.
    Shaw, L.B., Schwartz, I.B.: Fluctuating epidemics on adaptive networks. Phys. Rev. E. 77, 066101 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface. 5(20), 259–271 (2008)CrossRefGoogle Scholar
  37. 37.
    Galvani, A.P., Reluga, T.C., Chapman, G.B.: Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc. Natl. Acad. Sci. U. S. A. 104(13), 5692–5697 (2007)CrossRefGoogle Scholar
  38. 38.
    Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.J., Vespignani, A.: Modeling the worldwide spread of pandemic Influenza: baseline case and containment interventions. PLoS Med. 4(1), e13 (2007)CrossRefGoogle Scholar
  39. 39.
    Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. U. S. A. 101(42), 15124–15129 (2004)CrossRefGoogle Scholar
  40. 40.
    Svoboda, T., Henry, B., Shulman, L., Kennedy, E., Rea, E., Ng, W., Wallington, T., Yaffe, B., Gournis, E., Vicencio, E., Basrur, S., Glazier, R.H.: Public health measures to control the spread of the severe acute respiratory syndrome during the outbreak in Toronto. N. Engl. J. Med. 350(23), 2352–2361 (2004)CrossRefGoogle Scholar
  41. 41.
    Salathé, M., Bengtsson, L., Bodnar, T.J., Brewer, D.D., Brownstein, J.S., Buckee, C., Campbell, E.M., Cattuto, C., Khandelwal, S., Mabry, P.L.: Digital epidemiology. PLoS Comput. Biol. 8(7), e1002616 (2012)CrossRefGoogle Scholar
  42. 42.
    Ahituv, A., Hotz, V.J., Philipson, V.J.: The responsiveness of the demand for condoms to the local prevalence of AIDS. J. Hum. Resour. 31(4), 869–897 (1996)CrossRefGoogle Scholar
  43. 43.
    Kristiansen, I.S., Halvorsen, P.A., Gyrd-Hansen, D.: Influenza pandemic: perception of risk and individual precautions in a general population. BMC Public Health. 7(48), (2007)Google Scholar
  44. 44.
    Lau, J.T., Yang, X., Tsui, H., Kim, J.H.: Impacts of SARS on health-seeking behaviors in general population in Hong Kong. Prev. Med. 41(2), 454–462 (2005)CrossRefGoogle Scholar
  45. 45.
    Ferguson, N.: Capturing human behaviour. Nature. 446(7137), 733 (2007)CrossRefGoogle Scholar
  46. 46.
    Laver, S.M., Wetzels, J., Behrens, R.H.: Knowledge of malaria, risk perception, and compliance with prophylaxis and personal and environmental preventinve measures in travelers exiting Zimbabwe from Harare and Victoria Falls International Airport. J. Travel Med. 8(6), 298–303 (2001)CrossRefGoogle Scholar
  47. 47.
    Brewer, N.T., Chapman, G.B., Gibbons, F.X., Gerrard, M., McCaul, K.D., Weinstein, N.D.: Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination. Health Psychol. 26(2), 136–145 (2007)CrossRefGoogle Scholar
  48. 48.
    Brewer, N.T., Cuite, C.L., Herrington, J.E., Weinstein, N.D.: Risk compensation and vaccination: can getting vaccinated cause people to engage in risky behaviors? Ann. Behav. Med. 34(1), 95–99 (2007)CrossRefGoogle Scholar
  49. 49.
    Rubin, G.J., Amlot, R., Page, L., Wessely, S.: Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: cross sectional telephone survey. BMJ. 339, b2651 (2009)CrossRefGoogle Scholar
  50. 50.
    Jones, J.H., Salathe, M.: Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1). PLoS One. 4(12), e8032 (2009)CrossRefGoogle Scholar
  51. 51.
    Gross, T., D'Lima, C.J., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96(20), 208701 (2006)CrossRefGoogle Scholar
  52. 52.
    Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B. 274, 2925–2933 (2007)CrossRefGoogle Scholar
  53. 53.
    Han, X.-P.: Disease spreading with epidemic alert on small-world networks. Phys. Lett. A. 365, 1–5 (2008)CrossRefMATHGoogle Scholar
  54. 54.
    Gross, T., Kevrekidis, I.G.: Robust oscillations in SIS epidemics on adaptive networks: coarse graining by automated moment closure. Europhys. Lett. 82, 38004–38006 (2008)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Prado, F., Sheih, A., West, J.D., Kerr, B.: Coevolutionary cycling of host sociality and pathogen virulence in contact networks. J. Theor. Biol. 261(4), 561–569 (2009)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Cooperation prevails when individuals adjust their social ties. PLoS Comput. Biol. 2(10), e140 (2006)CrossRefGoogle Scholar
  57. 57.
    Pacheco, J.M., Traulsen, A., Nowak, M.A.: Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 97(25), 258103 (2006)CrossRefGoogle Scholar
  58. 58.
    Pacheco, J.M., Traulsen, A., Nowak, M.A.: Active linking in evolutionary games. J. Theor. Biol. 243, 437–443 (2006)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Pacheco, J.M., Traulsen, A., Ohtsuki, H., Nowak, M.A.: Repeated games and direct reciprocity under active linking. J. Theor. Biol. 250(4), 723–731 (2008)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Van Segbroeck, S., Santos, F.C., Lenaerts, T., Pacheco, J.M.: Reacting differently to adverse ties promotes cooperation in social networks. Phys. Rev. Lett. 102, 058105 (2009)CrossRefGoogle Scholar
  61. 61.
    Van Segbroeck, S., Santos, F.C., Lenaerts, T., Pacheco, J.M.: Selection pressure transforms the nature of social dilemmas in adaptive networks. New J. Phys. 13(1), 013007 (2011)CrossRefGoogle Scholar
  62. 62.
    Pinheiro, F.L., Santos, M.D., Santos, F.C., Pacheco, J.M.: Origin of peer influence in social networks. Phys. Rev. Lett. 112(9), 098702 (2014)CrossRefGoogle Scholar
  63. 63.
    Pinheiro, F.L., Santos, F.C., Pacheco, J.M.: Linking individual and collective behavior in adaptive social networks. Phys. Rev. Lett. 116(12), 128702 (2016)CrossRefGoogle Scholar
  64. 64.
    May, R.M.: Uses and abuses of mathematics in biology. Science. 303, 790–793 (2004)CrossRefGoogle Scholar
  65. 65.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A. 115, 700–721 (1927)CrossRefMATHGoogle Scholar
  66. 66.
    Ribeiro, R.M., Bonhoeffer, S.: Production of resistant HIV mutants during antiretroviral therapy. Proc. Natl. Acad. Sci. U. S. A. 97(14), 7681–7686 (2000)CrossRefMATHGoogle Scholar
  67. 67.
    Karlin, S., Taylor, H.E.: A First Course in Stochastic Processes. Academic Press, New York (1975)MATHGoogle Scholar
  68. 68.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North Holland, Amsterdam (2007)MATHGoogle Scholar
  69. 69.
    Antal, T., Scheuring, I.: Fixation of strategies for an evolutionary game in finite populations. Bull. Math. Biol. 68(8), 1923–1944 (2006)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Nåsel, I.: On the quasi-stationary distribution of the stochastic logistic epidemic. Math. Biosci. 156(1-2), 21–40 (1999)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Payn, B., Tanfer, K., Billy, J.O.G., Grady, W.R.: Men’s behavior change following infection with a sexually transmitted disease. Fam. Plan. Perspect. 29(4), 152–157 (1997)CrossRefGoogle Scholar
  72. 72.
    Emlet, C.A.: An examination of the social networks and social isolation in older and younger adults living with HIV/AIDS. Health Soc. Work. 31(4), 299–308 (2006)CrossRefGoogle Scholar
  73. 73.
    Zacks, S., Beavers, K., Theodore, D., Dougherty, K., Batey, B., Shumaker, J., Galanko, J., Shrestha, R., Fried, M.W.: Social stigmatization and Hepatitis C virus infection. J. Clin. Gastroenterol. 40(3), 220–224 (2006)CrossRefGoogle Scholar
  74. 74.
    Salathé, M., Khandelwal, S.: Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Comput. Biol. 7(10), e1002199 (2011)CrossRefGoogle Scholar
  75. 75.
    Chunara, R., Andrews, J.R., Brownstein, J.S.: Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am.J.Trop. Med. Hyg. 86(1), 39–45 (2012)CrossRefGoogle Scholar
  76. 76.
    Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. Biol. Sci. 266(1421), 859–867 (1999)CrossRefGoogle Scholar
  77. 77.
    Ogura, M., Preciado, V.M.: Epidemic processes over adaptive state-dependent networks. Phys. Rev. E. 93(6), 062316 (2016)CrossRefGoogle Scholar
  78. 78.
    Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. U. S. A. 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  79. 79.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–98 (2002)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Barthelemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jorge M. Pacheco
    • 1
    • 2
    • 3
  • Sven Van Segbroeck
    • 3
  • Francisco C. Santos
    • 3
    • 4
  1. 1.Centro de Biologia Molecular e AmbientalUniversidade do MinhoBragaPortugal
  2. 2.Departamento de Matemática e AplicaçõesUniversidade do MinhoBragaPortugal
  3. 3.ATP-groupPorto SalvoPortugal
  4. 4.INESC-ID & Instituto Superior TécnicoUniversidade de LisboaPorto SalvoPortugal

Personalised recommendations