Skip to main content
Log in

Infection Spreading in a Population with Evolving Contacts

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We study the spreading of an infection within an SIS epidemiological model on a network. Susceptible agents are given the opportunity of breaking their links with infected agents. Broken links are either permanently removed or reconnected with the rest of the population. Thus, the network coevolves with the population as the infection progresses. We show that a moderate reconnection frequency is enough to completely suppress the infection. A partial, rather weak isolation of infected agents suffices to eliminate the endemic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hatchett, R.J., Mecher, C.E., Lipsitch, M.: Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc. Natl. Acad. Sci. U. S. A. 104, 7582–7587 (2007)

    Article  ADS  Google Scholar 

  2. Bootsma, M.C., Ferguson, N.M.: The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc. Natl. Acad. Sci. U. S. A. 104, 7588–7593 (2007)

    Article  ADS  Google Scholar 

  3. Hurst, C.J.: Modeling Disease Transmission and Its Prevention by Disinfection. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  4. Pastor Satorras, R., Rubi, M., Díaz Guilera, A.: Statistical Mechanics of Complex Networks. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (2007)

    Google Scholar 

  6. Zimmermann, M.G., Eguíluz, V.M., San Miguel, M.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69, 065102R (2004)

    Article  ADS  Google Scholar 

  7. Stauffer, D., Hohnisch, M., Pittnauer, S.: The coevolution of individual economic characteristics and socioeconomic networks. Physica A 370, 734–740 (2006)

    Article  ADS  Google Scholar 

  8. Gil, S., Zanette, D.H.: Coevolution of agents and networks: opinion spreading and community disconnection. Phys. Lett. A 356, 89–94 (2006)

    Article  MATH  ADS  Google Scholar 

  9. Zanette, D.H., Gil, S.: Opinion spreading and agent segregation on evolving networks. Physica D 224, 156–165 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74, 056108 (2006)

    Article  ADS  Google Scholar 

  11. Gross, T., Dommar D’Lima, C., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)

    Article  ADS  Google Scholar 

  12. An example is explicitly analyzed in Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Cambridge (1992)

    Google Scholar 

  13. Bagnoli, F., Liò, P., Sguanci, L.: Risk perception in epidemic modeling. Phys. Rev. E 76, 061904 (2007)

    Article  ADS  Google Scholar 

  14. Levin, S.A., Durrett, R.: From individuals to epidemics. Phil. Trans. R. Soc. Lond. B 351, 1615–1621 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damián H. Zanette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanette, D.H., Risau-Gusmán, S. Infection Spreading in a Population with Evolving Contacts. J Biol Phys 34, 135–148 (2008). https://doi.org/10.1007/s10867-008-9060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9060-9

Keywords

Navigation