Skip to main content

Probing Potential for Cellular Stimulation by Time-Varying Magnetic Fields

  • Chapter
  • First Online:
Ultrashort Electric Pulse Effects in Biology and Medicine

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 482 Accesses

Abstract

Membrane pore creation by applying voltage pulses has been used for various applications including gene electrotransfer, electrochemotherapy, and tissue ablation. Electric pulse stimulation, however, requires insertion of electrodes into tissue, which may not always be conducive or convenient. On the other hand, time-varying magnetic fields can also induce time-dependent electric fields based on Lenz’s law and Maxwell’s equations, and thus be an alternative to creating transmembrane voltages across membranes. Pulsed magnetic fields would be a contactless, noninvasive technique allowing clinicians to affect any target within the body. This chapter discusses the concept of magnetically induced voltages, presents model results, with further elaboration of electromagnetic bio-stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed M, Brace CL, Lee FT Jr, Goldberg SN (2001) Principles of and advances in percutaneous ablation. Radiology 258:351–369

    Article  Google Scholar 

  • Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, Hansen MN, Dhagat P, Moses AS, Taratula O (2019) Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano 13:6383–6395

    Article  Google Scholar 

  • Anninos PA, Tsagas N, Jacobson JI, Kotini A (1999) The biological effects of magnetic stimulation in epileptic patients. Panminerva Med 41:207–215

    Google Scholar 

  • Arena CB, Sano MB, Rossmeisl Jr. JH, Caldwell JL, Garcia PA, Rylander MN, Davalos RV (2011) High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. BioMed Eng OnLine 10:102/1-20

    Google Scholar 

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Willis EL, Schoenbach KH (2003) Nanosecond, high intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495

    Article  Google Scholar 

  • Berg J, Tymoczko J, Stryer L (2002) Biochemistry. Freeman& Company, New York

    Google Scholar 

  • Cho MH, Lee EJ, Son M, Lee JH, Yoo D, Kim JW, Park SW, Shin JS, Cheon J (2012) A magnetic switch for the control of cell death signaling in in vitro and in vivo systems. Nat Mater 11:1038–1043

    Article  Google Scholar 

  • Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C (2008) Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 15:1286–1292

    Google Scholar 

  • Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3:139–143

    Article  Google Scholar 

  • Epstein CM, Davey K (2002) Iron-core coils for transcranial magnetic stimulation. J Clin Neurophysiol 19:376–381

    Article  Google Scholar 

  • Feng HL, Yan L, Cui Y (2008) Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain. Chin Med J (engl) 121:1307–1312

    Article  Google Scholar 

  • Hu Q, Joshi RP, Miklavcic D (2020) Calculations of cell transmembrane voltage induced by time varying magnetic fields. IEEE Trans Plasma Sci 48:1088–1095

    Article  Google Scholar 

  • Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense, ultrashort electric pulses. Crit Rev Bio-Med Eng 38:255–304

    Article  Google Scholar 

  • Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M (2012) Cell membrane electroporation- Part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23

    Article  Google Scholar 

  • McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551-560

    Article  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  Google Scholar 

  • Polson MJ, Barker AT, Freeston IL (1982) Stimulation of nerve trunks with time-varying magnetic fields. Med Biol Eng Comput 20:243–244

    Article  Google Scholar 

  • Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, Yu H, Huang Y, Feng J, Hao J, Deng L, Yan X, Dong X, Zhao Z, Jiang T, Wang HW, Luo SJ, Xie C (2016) A magnetic protein biocompass. Nat Mater 15:217–226

    Article  Google Scholar 

  • Scarlett SS, White JA, Blackmore PF, Schoenbach KH, Kolb JF (2009) Regulation of intracellular calcium concentration by nanosecond pulsed electric fields. Biochim Biophys Acta 1788:1168–1175

    Article  Google Scholar 

  • Schapira AH, Gu M, Taanman JW, Tabrizi SJ, Seaton T, Cleeter M, Cooper JM (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 44:S89-98

    Article  Google Scholar 

  • Simpson J, Lane J, Immer C, Youngquis R (2001) Simple analytic expressions for the magnetic field of a circular current loop. NASA/TM-2013-217919

    Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Valdez LB, Zaobornyj T, Boveris A (2006) Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta 1757:166–172

    Article  Google Scholar 

  • Weaver J (2003) Electroporation of biological membranes from multicellular to nanoscales. IEEE Trans Dielectr Electr Insul 10:754–776

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Joshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, R. (2021). Probing Potential for Cellular Stimulation by Time-Varying Magnetic Fields. In: Ultrashort Electric Pulse Effects in Biology and Medicine. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5113-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5113-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5112-8

  • Online ISBN: 978-981-10-5113-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics