Oxidative Stress-Mediated Human Diseases

  • Arti Srivastava
  • Ashutosh SrivastavaEmail author


Biological system inevitably produces reactive oxygen species (ROS) like superoxide (O2−), hydroxyl (OH), peroxyl (RO2−), alkoxyl (RO), etc. and reactive nitrogen species (RNS). Oxidative stress occurs when biological system failed to neutralize and eliminate the generated free radicals and active intermediates. To fight with the oxidative stress caused by ROS and RNS, animal and human cells have developed a ubiquitous antioxidant defense system consisting of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) together with lot of other low-molecular-weight antioxidants such as ascorbate, α-tocopherol, glutathione (GSH), etc.

Sometime this antioxidant defense system failed to neutralize and eliminate all the generated ROS and RNS due to various pathological and environmental factors. An increase level of ROS elicited oxidative damage to DNA and other biomolecules, leading to impair normal functions of tissue cells and lead to various diseases.


Oxidative stress ROS Antioxidant Diseases 



Authors would like to thank the in-house research facility provided by the Amity University Uttar Pradesh, India.


  1. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.CrossRefPubMedGoogle Scholar
  2. Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:1–21.CrossRefGoogle Scholar
  3. Bertini I, Magnani S, Viezzoli MS. Structure and properties of copper–zinc superoxide dismutase. In: S.A.G, editor. Advances in inorganic chemistry. New York: Academic Press; 1998. p. 127–250.Google Scholar
  4. Bilodeau JF, Hubel CA. Current concepts in the use of antioxidants for the treatment of preeclampsia. J Obstet Gynaecol Can. 2003;25:742–50.CrossRefPubMedGoogle Scholar
  5. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science. 1998;281:1851–4.CrossRefPubMedGoogle Scholar
  7. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid β-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging. 2002;23:655–64.CrossRefPubMedGoogle Scholar
  8. Cao L, Huang W, Liu J, Yin X, Dou S. Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol. 2010;151:386–92.CrossRefPubMedGoogle Scholar
  9. Chaitanya KV, Pathan AAK, Mazumdar SS, Chak-ravarthi GP, Parine N, Bobbarala V. Role of oxidative stress in human health: an overview. J Pharm Res. 2010;3:1330–3.Google Scholar
  10. Chakravarthi S, Jessop CE, Bulleid NJ. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 2006;7(3):271–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen AF, Chen DD, Daiber A, Faracim FM, Li H, et al. Free radical biology of cardiovascular system. Clin Sci (Lond). 2012;123:73–91.CrossRefGoogle Scholar
  12. Cirillo T, Cocchieri RA, Fasano E, Lucisano A, Tafuri S, Ferrante MC, Carpene E, Andreani G, Isani G. Cadmium accumulation and antioxidant responses in Sparus aurata exposed to waterborne cadmium. Arch Environ Contam Toxicol. 2012;62:118–26.CrossRefPubMedGoogle Scholar
  13. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461–91.PubMedPubMedCentralGoogle Scholar
  14. Faix S, Faixova Z, Boldizarova K, Javorsky P. The effect of long-term high heavy metal intake on lipid peroxidation of gastrointestinal tissue in sheep. Vet Med-Czech. 2005;50(9):401–5.Google Scholar
  15. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.CrossRefPubMedGoogle Scholar
  16. Firat O, Cogun HY, Aslanyavrusu S, Kargin F. Antioxidant responses and metalaccumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn+Cd.exposures. J Appl Toxicol. 2009;29:295–301.CrossRefPubMedGoogle Scholar
  17. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112.CrossRefPubMedGoogle Scholar
  18. Garcia-Ruiz C, Morales A, Ballesta A, Rodes J, Kaplowitz N, Fernandez-Checa JC. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes. J Clin Invest. 1994;94(1):193–201.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Haydent MR, Tyagi SC. Neural redox stress and remodeling in metabolic syndrome, type 2 diabetes. J Pancreas. 2002;3:126–38.Google Scholar
  20. Holmgren A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem. 1977;252:4600–6.PubMedGoogle Scholar
  21. Huang W, Cao L, Ye Z, Yin X, Dou S. Antioxidative responses and bioaccumulation in Japanese flounder larvae and juveniles under chronic mercury exposure. Comp Biochem Physiol C Toxicol Pharmacol. 2010;152:99–106.CrossRefPubMedGoogle Scholar
  22. Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992;257:1496–502.CrossRefPubMedGoogle Scholar
  23. Jenner P, Olanow W. The pathogenesis of cell death in Parkinson’s disease. Neurology. 2006;66:S24–36.CrossRefPubMedGoogle Scholar
  24. Koevary SB. Selective toxicity of rose Bengal to ovarian cancer cells in vitro. Int J Physiol Pathophysiol Pharmacol. 2012;4:99–107.PubMedPubMedCentralGoogle Scholar
  25. Kowaltowskia AJ, Castilhob RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001;495:12–5.CrossRefGoogle Scholar
  26. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.CrossRefPubMedGoogle Scholar
  27. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143–53.CrossRefPubMedGoogle Scholar
  28. Mari M, Morales A, Colell A, Garcia-Ruizb C, Fernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009;11(11):2685–700.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Metwally MAA, Fouad IM. Biochemical changes induced by heavy metal pollution in marine fishes at Khomse coast, Libya. Glob Vet. 2008;2(6):308–11.Google Scholar
  30. Monteiro DA, Rantin FT, Kalinin AL. Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology. 2010;19:105–23.CrossRefPubMedGoogle Scholar
  31. Monteiro DA, Rantin FT, Kalinin AL. Dietary intake of inorganic mercury: bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus. Ecotoxicology. 2013;22:446–56.CrossRefPubMedGoogle Scholar
  32. Noori S. An overview of oxidative stress and antioxidant defensive system. Open Access Sci Rep. 2012; doi: 10.4172/scientificreports.413.
  33. Ozkan-Yilmaz F, Ozluer-Hunt A, Gunduz SG, Berkoz M, Yalm S. Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio. Fish Physiol Biochem. 2014;40:355–63.CrossRefPubMedGoogle Scholar
  34. Parker WD, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res. 2008;16:215–8.CrossRefGoogle Scholar
  35. Peña-Silva RA, Miller JD, Chu Y, Heistad DD. Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves. Am J Phys Heart Circ Phys. 2009;297:1354–60.Google Scholar
  36. Perendija BR, Borkovic SS, Kovacevic TB, Pavlovic SZ, Stojanovic BD, Paunovic MM, Cakic PD, Radojicic RM, Pajovic SB, Saicic ZS. Glutathione dependent enzyme activities in the foot of three freshwater mussel species in the Sava River, Serbia. Arch Biol Sci Belgrade. 2007;59(3):169–75.CrossRefGoogle Scholar
  37. Plessinger MA, Woods JR Jr, Miller RK. Pretreatment of human amnion-chorion with vitamins C and E prevents hypochlorous acid-induced damage. Am J Obstet Gynecol. 2000;183:979–85.CrossRefPubMedGoogle Scholar
  38. Rahman T, Hosen I, Towhidul-Islam MM, Shekhar HU. Oxidative stress and human health. Adv Biosci Biotechnol. 2012;3:997–1019.CrossRefGoogle Scholar
  39. Ruas CBG, Carvalho CDS, de Araujo HSS, Espindola ELG, Fernandes MN. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol Environ Saf. 2008;71:86–93.CrossRefPubMedGoogle Scholar
  40. Saliu JK, Bawa-Allah KA. Toxicological effects of lead and zinc on the antioxidant enzyme activities of post juvenile Clarias gariepinus. Resour Environ. 2012;2(1):21–6.CrossRefGoogle Scholar
  41. Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26:1049–55.CrossRefPubMedGoogle Scholar
  42. Scibior D, Czeczot H. Catalase: structure, properties, functions. Postepy Hig Med Dosw. 2006;60:170–80.Google Scholar
  43. Selley ML, Close DR, Stern SE. The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol Aging. 2002;23:383–8.CrossRefPubMedGoogle Scholar
  44. Shafaq N. An overview of oxidative stress and antioxidant defensive system. J Cli Cell Immun. 2012;1:1–8.Google Scholar
  45. Stewart ZA, Pietenpol JA. p53 Signaling and cell cycle checkpoints. Chem Res Toxicol. 2001;14:243–63.CrossRefPubMedGoogle Scholar
  46. Switala J, Loewen PC. Diversity of properties among catalases. Arch Biochem Biophys. 2002;401:145–54.CrossRefPubMedGoogle Scholar
  47. Symons MCR, Gutteridge JMC. Superoxide, peroxides, and iron in biological systems. In: Symons MCR, Gutteridge JMC, editors. Free radicals and iron: chemistry, biology, and medicine. Oxford: University Press; 1998. p. 113–37.Google Scholar
  48. Szabo E, Riffe ME, Steinberg SM, Birrer MJ, Linnoila RI. Altered cJUN expression: an early event in human lung carcinogenesis. Cancer Res. 1996;56:305–15.PubMedGoogle Scholar
  49. Tanekhy M. Lead poisoning in Nile tilapia (Oreochromis niloticus): oxidant and antioxidant relationship for three fish species from nansi lake, China. Environ Monit Assess. 2015;187:154–67.CrossRefPubMedGoogle Scholar
  50. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.CrossRefPubMedGoogle Scholar
  52. Vasavidevi VB, Kishor HD, Adinath NS, Rajesh DA, Raghavendra VK. Depleted nitrite and enhanced oxidative stress in urolithiasis. Indian J Clin Biochem. 2006;21:177–80.Google Scholar
  53. Verzola D, Maria BB, Barbara V, Luciano O, Franco D, Francesca S, Valeria B, Maria TG, Giacomo G, Giacomo D. Oxidative stress mediates apoptotic changes induced by hyperglycemia in human tubular kidney cells. J Am Soc Nephrol. 2004;l15:S85–7.CrossRefGoogle Scholar
  54. Viarengo A. Heavy metals in marine invertebrates, mechanisms of regulation and toxicity at cellular concentrations. Rev Aquat Sci. 1989;1:295–317.Google Scholar
  55. Volm M, van Kaick G, Mattern J. Analysis of c-fos, c-erbB1, c-erbB2 and c-myc in primary lung carcinomas and their lymph node metastases. Clin Exp Metastasis. 1994;12:329–34.CrossRefPubMedGoogle Scholar
  56. Yudoh K, Trieu NV, Nakamura H, Kayo HM, Tomohiro K, Kusuki N. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther. 2005;7:380–91.CrossRefGoogle Scholar
  57. Zhang J, Perry G, Smith MA. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol. 1999;154:1423–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhu J, Chu CT. Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis. 2010;20(Suppl 2):S325–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations