Skip to main content

Combination of Heterogeneous Features for Wrist Pulse Blood Flow Signal Diagnosis via Multiple Kernel Learning

  • Chapter
  • First Online:
Computational Pulse Signal Analysis

Abstract

A number of feature extraction methods have been proposed to extract linear and nonlinear and time and frequency features of wrist pulse signal. These features are heterogeneous in nature and are likely to contain complementary information, which highlights the need for the integration of heterogeneous features for pulse classification and diagnosis. In this chapter, we propose a novel effective method to classify the wrist pulse blood flow signals by using the multiple kernel learning (MKL) algorithm to combine multiple types of features. In the proposed method, seven types of features are first extracted from the wrist pulse blood flow signals using the state-of-the-art pulse feature extraction methods and are then fed to an efficient MKL method, SimpleMKL, to combine heterogeneous features for more effective classification. Experimental results show that the proposed method is promising in integrating multiple types of pulse features to further enhance the classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Wang, L. Xu, D. Zhang, and C. Shi, “TCPD based pulse monitoring and analyzing,” in Proc. IEEE Mach. Learning Cybern. Conf., vol. 3, Beijing, China, 2002, pp. 1366–1370.

    Google Scholar 

  2. H. Wang and Y. Cheng, “A quantitative system for pulse diagnosis in traditional Chinese medicine,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., Shanghai, China, 2005, pp. 5676–5679.

    Google Scholar 

  3. S. Lukman, Y. He, and S.-C. Hui, “Computational methods for traditional Chinese medicine: A survey,” Comput. Methods Programs Biomed., vol. 88, no. 3, pp. 283–294, 2007.

    Article  Google Scholar 

  4. L. Zhu, J. Yan, Q. Tang, and Q. Li, “Recent progress in computerization of TCM, “ J. Commun. Comput., vol. 3, no. 7, pp. 78–81, 2006.

    Google Scholar 

  5. L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Trans. Biomed. Eng., vol. 52, no. 11, pp. 1973–1975, Nov. 2005.

    Article  Google Scholar 

  6. L. Xu, D. Zhang, K. Wang, N. Li, and X. Wang, “Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter,” Comput. Biol. Med., vol. 37, no. 5, pp. 716–731, May 2007.

    Article  Google Scholar 

  7. L. Xu, M. Q.-H. Meng, R. Liu, and K. Wang, “Robust peak detection of pulse waveform using height ratio,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2008, pp. 3856–3859.

    Google Scholar 

  8. D. Zhang, W. Zuo, D. Zhang, H. Zhang, and N. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” J. Biomed. Sci. Eng., vol. 3, no. 4, pp. 361–366, 2010.

    Article  Google Scholar 

  9. Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Computerized wrist pulse signal diagnosis using modified auto-regressive models,” J. Med. Syst., vol. 35, no. 3, pp. 321–328, 2011.

    Article  Google Scholar 

  10. Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Wrist pulse signal diagnosis using modified Gaussian models and fuzzy C-means classification,” J. Med. Eng. Phys., vol. 31, no. 10, pp. 1283–1289, 2009.

    Article  Google Scholar 

  11. D. Zhang, L. Zhang, D. Zhang, and Y. Zheng, “Wavelet-based analysis of Doppler ultrasonic wrist-pulse signals,” in Proc. BioMed. Eng. Informatics Conf., 2008, vol. 2, pp. 539–543.

    Google Scholar 

  12. H. Wang and Y. Cheng, “A quantitative system for pulse diagnosis in Traditional Chinese Medicine,” in Proc. IEEE Eng. Med. Biol. Conf., 2005, pp. 5676–5679.

    Google Scholar 

  13. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” J. Data Mining Knowl. Discovery, vol. 2, pp. 121–167, 1998.

    Google Scholar 

  14. C. Chiu, S. Yeh, and Y. Yu, “Classification of the pulse signals based on self-organizing neural network for the analysis of the autonomic nervous system,” Chin. J. Med. Biol. Eng., vol. 16, pp. 461–476, 1996.

    Google Scholar 

  15. D. Zhang, W. Zuo, D. Zhang, and H. Zhang, “Time series classification using support vector machine with Gaussian elastic metric kernel,” in Proc. Int. Conf. Pattern Recog, 2010, pp. 29–32.

    Google Scholar 

  16. A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, “SimpleMKL, ” J. Mach. Learning Res., vol. 9, pp. 2491–2521, 2008.

    Google Scholar 

  17. F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel learning, conic duality, and the SMO algorithm,” in Proc. 21st Int. Conf. Mach. Learning, 2004, pp. 41–48.

    Google Scholar 

  18. S. Sonnenburg, G. Ra¨tsch, C. Scha¨fer, and B. Scho¨lkopf, “Large scale multiple kernel learning,” J. Mach. Learning Res., vol. 7, pp. 1531–1565, 2006.

    Google Scholar 

  19. Y.-J. Lee, J. Lee, and J.-Y. Kim, “A study on characteristics of radial arteries through ultrasonic waves,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2008, pp. 2453–2456.

    Google Scholar 

  20. L. Xu, M. Q.-H. Meng, K. Wang, L. Wang, and N. Li, “Pulse image recognition using fuzzy neural network,” Expert Syst. Appl., vol. 36, pp. 3805–3811, 2009.

    Article  Google Scholar 

  21. Y. Wang, X. Wu, B. Liu, and Y. Yi, “Definition and application of indices in Doppler ultrasound sonogram, ” Shanghai J. Biomed. Eng., vol. 18, pp. 26–29, 1997.

    Google Scholar 

  22. H. Sakoe and S. Chiba, “A dynamic programming approach to continuous speech recognition,” in Proc. Acoust. Conf. 1971, pp. 65–68.

    Google Scholar 

  23. L. Chen and R. Ng, “On the marriage of LP-norm and edit distance,” Proc. Very Large Data Bases Conf., pp. 792–801, 2004.

    Google Scholar 

  24. P.-F. Marteau, “Time warp edit distance with stiffness adjustment for time series matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 306–318, Feb. 2009.

    Article  Google Scholar 

  25. L. Liu, W. Zuo, D. Zhang, H. Zhang, and N. Li, “Classification of wrist pulse blood flow signal using time warp edit distance,” in Proc. Int. Conf. Med. Biometrics, 2010, vol. 6165, pp. 137–144.

    Google Scholar 

  26. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” in Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., 1998, vol. 454, pp. 903–995.

    Article  MathSciNet  Google Scholar 

  27. S. M. Pincus, “Approximate entropy as a measure of system complexity,” Proc. Nat. Acad. Sci., vol. 88, no. 6, pp. 2297–2301, 1991.

    Article  MathSciNet  Google Scholar 

  28. L. Xu, M. Q.-H. Meng, X. Qi, and K. Wang, “Morphology variability analysis of wrist pulse waveform for assessment of arteriosclerosis status, ” J. Med. Syst., vol. 34, no. 3, pp. 331–339, 2010.

    Article  Google Scholar 

  29. G. R. G. Lanckriet, T. D. Bie, N. Cristianini, M. I. Jordan, and W. S. Noble, “A statistical framework for genomic data fusion, ” J. Bioinformatics, vol. 20, pp. 2626–2635, 2004.

    Article  Google Scholar 

  30. A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat time series classification with support vector machines, ” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 4, pp. 512–518, Jul. 2009.

    Google Scholar 

  31. A.-M. Zou, J. Shi, J. Ding, and F.-X. Wu, “Charge state determination of peptide tandem mass spectra using support vector machine (SVM), ” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 3, pp. 552–558, May 2010.

    Google Scholar 

  32. J. Shawe-Taylor and N Cristianini, Kernel Methods for Pattern Analysis. Cambridge, U.K.: Cambridge Univ. Press, 2004.

    Google Scholar 

  33. J. T. L. Wang and X. Wu, “Kernel design for RNA classification using Support Vector Machines,” J. Data Mining Bioinformatics, vol. 1, no. 1, pp. 57–76, 2006.

    Article  Google Scholar 

  34. D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval, ” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1088–1099, Jul. 2006.

    Google Scholar 

  35. D. Jia, N. Li, S. Liu, and S. Li, “Decision level fusion for pulse signal classification using multiple features, ” in Proc. BioMed. Eng. Informatics Conf., 2010, pp. 843–847.

    Google Scholar 

  36. Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,” Psychometrika, vol. 12, pp. 153–157, 1947.

    Article  Google Scholar 

  37. D. Zhang, W. Zuo, D. Zhang, Y. Li, and N. Li, “Gaussian ERP kernel classifier for pulse waveforms classification, ” in Proc. Int. Conf. Pattern Recog., 2010, pp. 2736–2739.

    Google Scholar 

  38. M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Tuning support vector machines for minimax and Neyman–Pearson classification, ” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 10, pp. 1888–1898, Oct. 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Zuo, W., Wang, P. (2018). Combination of Heterogeneous Features for Wrist Pulse Blood Flow Signal Diagnosis via Multiple Kernel Learning. In: Computational Pulse Signal Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4044-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4044-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4043-6

  • Online ISBN: 978-981-10-4044-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics