Skip to main content

Osmolyte System and Its Biological Significance

  • Chapter
  • First Online:
Cellular Osmolytes

Abstract

The proper functioning of organisms in stress conditions is an axiological exercise. Proteins are vulnerable to denaturation and misfolding under hiked temperatures, increased hydrostatic pressure, the presence of chaotropic agents, etc. Osmolytes are one of the most important groups of molecules that are employed by the cell as an adaptation to these harsh conditions. These small molecules maintain cell volume, osmotic equilibrium, redox states, and energy quanta of the cell. The current chapter reviews the versatility of the osmolytes in various metabolic functions and how widely they are distributed across the different classes of organisms (plants, animals, insects, marine animals, etc.). This chapter discusses their diversity and the exact mechanism by virtue of which these osmolytes are able to impart stability to the proteins. It also elucidates on the application of these osmolytes in treatment of various diseases and as possible drugs from the pharmaceutical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Abe Y, Ohkuri T, Mishima T, Monji A, Kanba S, Ueda T (2013) Mechanism for retardation of amyloid fibril formation by sugars in Vλ6 protein. Protein Sci 22(4):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew TR, Rösgen J, Bolen DW (2003) Osmolyte effects on kinetics of FKBP12 C22A folding coupled with prolyl isomerization. J Mol Biol 330(4):851–866

    Article  Google Scholar 

  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD + -dependent glycerol 3- phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennion BJ, Daggett V (2004) Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. Proc Natl Acad Sci U S A 101:6433–6438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown A, Simpson J (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol 72:589–591

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283(12):7309–7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87(4):1441–1474

    Article  CAS  PubMed  Google Scholar 

  • Carr WES, Netherton JC, Gleeson RA, Derby CD (1996) Stimulants of feeding behaviour in fish: analyses of tissues of diverse marine organisms. Biol Bull 190:149–160

    Google Scholar 

  • Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammal. J Exp Biol 207:3125–3129

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Kishore N, Hosur RV (2015) Inhibition of insulin fibrillation by osmolytes: mechanistic Insights. Sci Rep 5:17599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769

    CAS  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90(3):537–548

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM (2006) Protein aggregation and its consequences for human disease. Protein Pept Lett 13(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Fiess JC, Hom JR, Hudson HA, Kato C, Yancey PH (2002) Phosphodiester amine, taurine and derivatives, and other osmolytes in vesicomyid bivalves: correlations with depth and symbiont metabolism. Cahiers Biol Mar 43:337–340

    Google Scholar 

  • Fink AL, Oberg KA, Seshadri S (1997) Discrete intermediates versus molten globule models for protein folding: characterization of partially folded intermediates of apomyoglobin. Fold Des 3:19–25

    Article  Google Scholar 

  • Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Perez A, Burg MB (1991) Renalmedullary organic osmolytes. Physiol Rev 71:1081–1115

    Google Scholar 

  • Ghars MA, Richard L, Lefebvre-De Vos D et al (2012) Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress. Plant Cell Physiol 53:183–192

    Article  CAS  PubMed  Google Scholar 

  • Gralla JD, Vargas DR (2006) Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation. EMBO J 25(7):1515–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagihara M, Takei A, Ishii T, Hayashi F, Kubota K, Wakamatsu K, Nameki N (2012) Inhibitory effects of choline-O-sulfate on amyloid formation of human islet amyloid polypeptide. FEBS Open Bio 2(2012):20–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Hameed A, Hussain T, Gulzar S, Aziz I, Gul B, Khan MA (2012) Salt tolerance of a cash crop halophyte Suaeda fruticosa: biochemical responses to salt and exogenous chemical treatments. Acta Physiol Plant 34:2331–2340

    Article  CAS  Google Scholar 

  • Hanson AD and Burnet M (1994) Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In: Cherry JH (ed) Cell biology: biochemical and cellular mechanisms of stress tolerance in plants, NATO ASI series H. Springer, Berlin, pp 291–302

    Chapter  Google Scholar 

  • Haque I, Singh R, Moosavi-Movahedi AA, Ahmad F (2005) Testing polyols compatibility with Gibbs energy of stabilization of proteins under conditions in which they behave as compatible osmolytes. FEBS Lett 579(18):3891–3898

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Häussinger D (1998) Osmoregulation of liver cell function: signalling, osmolytes and cell heterogeneity. Contrib Nephrol 123:185–204

    Article  PubMed  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inayathullah M, Rajadas J (2016) Effect of osmolytes on the conformation and aggregation of some amyloid peptides: CD spectroscopic data. Data Brief 7(2016):1643–1651

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170(5):319–330

    Article  CAS  PubMed  Google Scholar 

  • Kiewietdejonge A, Pitts M, Cabuhat L, Sherman C, Kladwang W, Miramontes G, Floresvillar J, Chan J, Ramirez RM (2006) Hypersaline stress induces the turnover of phosphatidylcholine and results in the synthesis of the renal osmoprotectant glycerophosphocholine in Saccharomyces cerevisiae. FEMS Yeast Res 6(2):205–217

    Article  CAS  PubMed  Google Scholar 

  • King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A (1996) Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J 10:57–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch MA, German DA (2013) Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Front Plant Sci 4:267–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Serrette JM, Thompson EB (2005) Osmolyte-induced folding enhances tryptic enzyme activity. Arch Biochem Biophys 436:78–82

    Article  CAS  PubMed  Google Scholar 

  • Law RO (1994) Regulation of mammalian brain cell volume. J Exp Zool 268(2):90–96

    Article  CAS  PubMed  Google Scholar 

  • Leandro P, Gomes CM (2008) Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini-Rev Med Chem 8(9):901–911

    Article  CAS  PubMed  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Org Cult 104:41–49

    Article  CAS  Google Scholar 

  • London J, Skrzynia C, Goldberg ME (1974) Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur J Biochem 47:409–415

    Article  CAS  PubMed  Google Scholar 

  • Marcum KB, Murdoch CL (1992) Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytol 120:281–288

    Article  CAS  Google Scholar 

  • Miller TJ, Hanson RD, Yancey PH (2000) Developmental changes in organic osmolytes in prenatal and postnatal rat tissues. Comp Biochem Physiol 125:45–56

    Article  CAS  Google Scholar 

  • Mitraki A, King J (1992) Amino acid substitutions influencing intracellular protein folding pathways. FEBS Lett 307:20–25

    Article  CAS  PubMed  Google Scholar 

  • Nagarajavel V, Madhusudan S, Dole S, Rahmouni AR, Schnetz K (2007) Repression by binding of H-NS within the transcription unit. J Biol Chem 282(32):23622–23630

    Article  CAS  PubMed  Google Scholar 

  • Olson JE, Kreisman NR, Lim J, Hoffman B, Schelble D, Leasure J (2003) Taurine and cellular volume regulation in the hippocampus. In: Lombardini B, Schaffer S, Azuma J (eds) Taurine 5. Kluwer Plenum, New York, pp 107–114

    Chapter  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiol 144:1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  • Pruski AM, Fiala-Médioni A, Fisher CR, Colomines JC (2000a) Composition of free amino acids and related compounds in invertebrates with symbiotic bacteria at hydrocarbon seeps in the Gulf of Mexico. Mar Biol 136:411–420

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Google Scholar 

  • Rosenberg NB, Lee RW, Yancey PH (2003) Adaptation to environmental stresses with osmolytes: possible roles for betaine, hypotaurine and thiotaurine in gastropods from hydrothermal vents. Comp Biochem Physiol 134:S120

    Google Scholar 

  • Roth J, Hin-Fai YG, Jingyu F, Kiyoko H, Gaplovska-Kysela K, Le Fourn V et al (2008) Protein quality control: the who’s who, the where’s and therapeutic escapes. Histochem Cell Biol 129(2):163–177

    Article  CAS  PubMed  Google Scholar 

  • Saad-Nehme J, Silva JL, Meyer-Fernandes JR (2001) Osmolytes protect mitochondrial F0F1-ATPase complex against pressure inactivation. Biochim Biophys Acta 1546:164–170

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Veerabhadra Rao K, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Saito H, Tatebayashi K (2004) Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem 136(3):267–272

    Article  CAS  PubMed  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S, Azuma J, Takahashi K, Mozaffari M (2003) Why is taurine cytoprotective? In: Lombardini B, Schaffer S, Azuma J (eds) Taurine 5. Kluwer Plenum, New York, pp 307–321

    Chapter  Google Scholar 

  • Setchell BP, Sanchez-Partida LG, Chairussyuhur A (1993) Epididymal constituents and related substances in the storage of spermatozoa: a review. Reprod Fertil Devel 5:601–612

    Article  CAS  Google Scholar 

  • Shen B, Hohman S, Jensen RG, Bohnert HJ (1999) Role of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol 16:460–468

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Haque I, Ahmad F (2005) Counteracting osmolyte trimethylamine N-oxide destabilizes proteins at pH below its pKa. Measurements of thermodynamic parameters of proteins in the presence and absence of trimethylamine N-oxide. J Biol Chem 280(12):1035–1042

    Article  Google Scholar 

  • Singh LR, Dar TA, Rahman S, Jamal S, Ahmad F (2009) Glycine betaine may have opposite effects on protein stability at high and low pH values. Biochim Biophys Acta 1794(6):929–935

    Article  CAS  PubMed  Google Scholar 

  • Singh LR, Poddar NK, Dar TA, Kumar R, Ahmad F (2011) Protein and DNA destabilization by osmolytes: the other side of the coin. Life Sci 88:117–125

    Article  CAS  PubMed  Google Scholar 

  • Storey KB, Storey JM (1996) Natural freezing survival in animals. Ann Rev Ecol Syst 27:365–386

    Article  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP in marine algae. Nature 418:317–320

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Kovacs H, Zilberstein A, Bouchereau A (2011) Plants in extreme environments: importance of protective compounds in stress tolerance. Adv Bot Res 57:105–150

    Article  CAS  Google Scholar 

  • Taneja S, Ahmad F (1994) Increased thermal stability of proteins in the presence of amino acids. Biochem J 303(Pt 1):147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunnacliffe A, Lapinski J (2003) Resurrecting Van Leeuwenhoek’srotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philos Trans R Soc Lond Ser B 358:1755–1771

    Article  CAS  Google Scholar 

  • Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22(6):693–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Alstyne KL, Houser LT (2003) Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar Ecol Prog Ser 250:175–181

    Article  CAS  Google Scholar 

  • Wetzel R, Chrunyk BA (1994) Inclusion body formation by interleukin-1β depends on the thermal sensitivity of a folding intermediate. FEBS Lett 350:245–248

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH (2003) Proteins and counteracting osmolytes. Biologist 50:126–131

    Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Blake WR, Conley J (2002) Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A Mol Integr Physiol 133(3):667–676

    Article  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–1102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Chaudhuri (Chattopadhyay) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chaudhuri (Chattopadhyay), P., Rashid, N., Thapliyal, C. (2017). Osmolyte System and Its Biological Significance. In: Rajendrakumar Singh, L., Dar, T. (eds) Cellular Osmolytes. Springer, Singapore. https://doi.org/10.1007/978-981-10-3707-8_1

Download citation

Publish with us

Policies and ethics