Skip to main content

Impact of Static Magnetic Fields (SMFs) on Cells

  • Chapter
  • First Online:
Biological Effects of Static Magnetic Fields

Abstract

This chapter contains two parts. The first one is about parameters that influence the cellular effects of static magnetic fields (SMFs), including magnetic field intensity, cell types, cell densities as well as other cellular factors. The second part is about the various commonly seen cellular effects of SMFs, including cell orientation, proliferation, microtubule and cell division, actin, viability, attachment/adhesion, morphology, migration, membrane, cell cycle, chromosome and DNA, reactive oxygen species (ROS), adenosine triphosphate (ATP) as well as calcium. The focus of this chapter is on current evidence of SMFs on human cells and some animal cells, and especially on the potential factors that contributed to the different observations in individually reported studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair RK. Static and low-frequency magnetic field effects: health risks and therapies. Rep Prog Phys. 2000;63(3):415–54.

    Article  CAS  Google Scholar 

  • Albuquerque WW, Costa RM, Fernandes Tde S, Porto AL. Evidences of the static magnetic field influence on cellular systems. Prog Biophys Mol Biol. 2016;121(1):16–28.

    Article  CAS  PubMed  Google Scholar 

  • Aldinucci C, Garcia JB, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina GP. The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function. Bioelectromagnetics. 2003a;24(6):373–9.

    Article  PubMed  Google Scholar 

  • Aldinucci C, Garcia JB, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina GP. The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics. 2003b;24(2):109–17.

    Article  PubMed  Google Scholar 

  • Andrews MJ, McClure JA, Malinin GI. Induction of chromosomal alignment by high frequency electric fields. FEBS Lett. 1980;118(2):233–6.

    Article  CAS  PubMed  Google Scholar 

  • Anton-Leberre V, Haanappel E, Marsaud N, Trouilh L, Benbadis L, Boucherie H, Massou S, Francois JM. Exposure to high static or pulsed magnetic fields does not affect cellular processes in the yeast Saccharomyces cerevisiae. Bioelectromagnetics. 2010;31(1):28–38.

    CAS  PubMed  Google Scholar 

  • Baba M, Hirai S, Kawakami S, Kishida T, Sakai N, Kaneko S, Yao M, Shuin T, Kubota Y, Hosaka M, Ohno S. Tumor suppressor protein VHL is induced at high cell density and mediates contact inhibition of cell growth. Oncogene. 2001;20(22):2727–36.

    Article  CAS  PubMed  Google Scholar 

  • Bajpai I, Saha N, Basu B. Moderate intensity static magnetic field has bactericidal effect on E. coli and S. epidermidis on sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater. 2012;100(5):1206–17.

    Article  PubMed  CAS  Google Scholar 

  • Ballardin M, Tusa I, Fontana N, Monorchio A, Pelletti C, Rogovich A, Barale R, Scarpato R. Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutat Res. 2011;716(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  • Barbier E, Dufy B, Veyret B. Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics. 1996;17(4):303–11.

    Article  CAS  PubMed  Google Scholar 

  • Bellossi A. Lack of an effect of static magnetic-field on calcium efflux from isolated chick brains. Bioelectromagnetics. 1986;7(4):381–6.

    Article  CAS  PubMed  Google Scholar 

  • Belton M, Commerford K, Hall J, Prato FS, Carson JJ. Real-time measurement of cytosolic free calcium concentration in HL-60 cells during static magnetic field exposure and activation by ATP. Bioelectromagnetics. 2008;29(6):439–46.

    Article  CAS  PubMed  Google Scholar 

  • Belton M, Prato FS, Rozanski C, Carson JJ. Effect of 100 mT homogeneous static magnetic field on [Ca2+]c response to ATP in HL-60 cells following GSH depletion. Bioelectromagnetics. 2009;30(4):322–9.

    Article  CAS  PubMed  Google Scholar 

  • Bernabo N, Saponaro I, Tettamanti E, Mattioli M, Barboni B. Acute exposure to a 2 mT static magnetic field affects ionic homeostasis of in vitro grown porcine granulosa cells. Bioelectromagnetics. 2014;35(3):231–4.

    Article  CAS  PubMed  Google Scholar 

  • Bodega G, Forcada I, Suarez I, Fernandez B. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture. Environ Res. 2005;98(3):355–62.

    Article  CAS  PubMed  Google Scholar 

  • Braganza LF, Blott BH, Coe TJ, Melville D. The superdiamagnetic effect of magnetic fields on one and two component multilamellar liposomes. Biochim Biophys Acta. 1984;801(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  • Bras W, Diakun GP, Diaz JF, Maret G, Kramer H, Bordas J, Medrano FJ. The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and x-ray fiber diffraction study. Biophys J. 1998;74(3):1509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bras W, Torbet J, Diakun GP, Rikken GL, Diaz JF. The diamagnetic susceptibility of the tubulin dimer. J Biophys. 2014;2014:985082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchachenko AL, Kuznetsov DA. Magnetic field affects enzymatic ATP synthesis. J Am Chem Soc. 2008;130(39):12868.

    Article  CAS  PubMed  Google Scholar 

  • Caceres-Cortes JR, Alvarado-Moreno JA, Rangel-Corona R, Soto-Cruz I, Weiss-Steider B, Hugo P, Brousseau R, Hoang T. Implication of c-mt and steel factor in cell-density dependent growth in hematological and non hematological tumors. Blood. 1999;94(10):74a. –74a

    Google Scholar 

  • Caceres-Cortes JR, Alvarado-Moreno JA, Waga K, Rangel-Corona R, Monroy-Garcia A, Rocha-Zavaleta L, Urdiales-Ramos J, Weiss-Steider B, Haman A, Hugo P, Brousseau R, Hoang T. Implication of tyrosine kinase receptor and steel factor in cell density-dependent growth in cervical cancers and leukemias. Cancer Res. 2001;61(16):6281–9.

    CAS  PubMed  Google Scholar 

  • Calabro E, Condello S, Curro M, Ferlazzo N, Caccamo D, Magazu S, Ientile R. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics. 2013;34(8):618–29.

    Article  CAS  PubMed  Google Scholar 

  • Carson JJL, Prato FS, Drost DJ, Diesbourg LD, Dixon SJ. Time-varying magnetic-fields increase cytosolic free Ca-2+ in Hl-60 cells. Am J Phys. 1990;259(4):C687–92.

    CAS  Google Scholar 

  • Chen WF, Qi H, Sun RG, Liu Y, Zhang K, Liu JQ. Static magnetic fields enhanced the potency of cisplatin on k562 cells. Cancer Biother Radiopharm. 2010;25(4):401–8.

    Article  CAS  PubMed  Google Scholar 

  • Chionna A, Dwikat M, Panzarini E, Tenuzzo B, Carla EC, Verri T, Pagliara P, Abbro L, Dini L. Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur J Histochem. 2003;47(4):299–308.

    CAS  PubMed  Google Scholar 

  • Chionna A, Tenuzzo B, Panzarini E, Dwikat MB, Abbro L, Dini L. Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics. 2005;26(4):275–86.

    Article  CAS  PubMed  Google Scholar 

  • Chuo W, Ma T, Saito T, Sugita Y, Maeda H, Zhang G, Li J, Liu J, Lu L. A preliminary study of the effect of static magnetic field acting on rat bone marrow mesenchymal stem cells during osteogenic differentiation in vitro. J Hard Tiss Biol. 2013;22(2):227–32.

    Article  CAS  Google Scholar 

  • Coletti D, Teodori L, Albertini MC, Rocchi M, Pristera A, Fini M, Molinaro M, Adamo S. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Cytometry A. 2007;71(10):846–56.

    Article  PubMed  Google Scholar 

  • Cridland NA, Cragg TA, Haylock RG, Saunders RD. Effects of 50 Hz magnetic field exposure on the rate of DNA synthesis by normal human fibroblasts. Int J Radiat Biol. 1996;69(4):503–11.

    Article  CAS  PubMed  Google Scholar 

  • Crotty D, Silkstone G, Poddar S, Ranson R, Prina-Mello A, Wilson MT, Coey JM. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase. Proc Natl Acad Sci U S A. 2012;109(5):1437–42.

    Article  CAS  PubMed  Google Scholar 

  • Davies AM, Weinberg U, Palti Y. Tumor treating fields: a new frontier in cancer therapy. Ann N Y Acad Sci. 2013;1291:86–95.

    Article  PubMed  Google Scholar 

  • Davis ME. Tumor treating fields – an emerging cancer treatment modality. Clin J Oncol Nurs. 2013;17(4):441–3.

    Article  PubMed  Google Scholar 

  • De Nicola M, Cordisco S, Cerella C, Albertini MC, D’Alessio M, Accorsi A, Bergamaschi A, Magrini A, Ghibelli L. Magnetic fields protect from apoptosis via redox alteration. Ann N Y Acad Sci. 2006;1090:59–68.

    Article  PubMed  Google Scholar 

  • Denegre JM, Valles Jr JM, Lin K, Jordan WB, Mowry KL. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci U S A. 1998;95(25):14729–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dini L, Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron. 2005;36(3):195–217.

    Article  PubMed  Google Scholar 

  • Dini L, Dwikat M, Panzarini E, Vergallo C, Tenuzzo B. Morphofunctional study of 12-O-tetradecanoyl-13-phorbol acetate (TPA)-induced differentiation of U937 cells under exposure to a 6 mT static magnetic field. Bioelectromagnetics. 2009;30(5):352–64.

    Article  CAS  PubMed  Google Scholar 

  • Eguchi Y, Ueno S. Stress fiber contributes to rat Schwann cell orientation under magnetic field. IEEE Trans Magn. 2005;41(10):4146–8.

    Article  Google Scholar 

  • Eguchi Y, Ogiue-Ikeda M, Ueno S. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci Lett. 2003;351(2):130–2.

    Article  CAS  PubMed  Google Scholar 

  • Eguchi Y, Ueno S, Kaito C, Sekimizu K, Shiokawa K. Cleavage and survival of Xenopus embryos exposed to 8 T static magnetic fields in a rotating clinostat. Bioelectromagnetics. 2006;27(4):307–13.

    Article  PubMed  Google Scholar 

  • Emura R, Ashida N, Higashi T, Takeuchi T. Orientation of bull sperms in static magnetic fields. Bioelectromagnetics. 2001;22(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  • Emura R, Takeuchi T, Nakaoka Y, Higashi T. Analysis of anisotropic diamagnetic susceptibility of a bull sperm. Bioelectromagnetics. 2003;24(5):347–55.

    Article  PubMed  Google Scholar 

  • Fanelli C, Coppola S, Barone R, Colussi C, Gualandi G, Volpe P, Ghibelli L. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 1999;13(1):95–102.

    CAS  PubMed  Google Scholar 

  • Fassina L, Visai L, Benazzo F, Benedetti L, Calligaro A, De Angelis MG, Farina A, Maliardi V, Magenes G. Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng. 2006;12(7):1985–99.

    Article  CAS  PubMed  Google Scholar 

  • Flipo D, Fournier M, Benquet C, Roux P, Le Boulaire C, Pinsky C, LaBella FS, Krzystyniak K. Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A. 1998;54(1):63–76.

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Liu Y, Zhou J, Pan H. Effects of a strong static magnetic field on bacterium Shewanella oneidensis: an assessment by using whole genome microarray. Bioelectromagnetics. 2005;26(7):558–63.

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12(3):230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghibelli L, Cerella C, Cordisco S, Clavarino G, Marazzi S, De Nicola M, Nuccitelli S, D’Alessio M, Magrini A, Bergamaschi A, Guerrisi V, Porfiri LM. NMR exposure sensitizes tumor cells to apoptosis. Apoptosis. 2006;11(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  • Gioia L, Saponaro I, Bernabo N, Tettamanti E, Mattioli M, Barboni B. Chronic exposure to a 2 mT static magnetic field affects the morphology, the metabolism and the function of in vitro cultured swine granulosa cells. Electromagn Biol Med. 2013;32(4):536–50.

    Article  CAS  PubMed  Google Scholar 

  • Guido S, Tranquillo RT. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels – correlation of fibroblast orientation and gel birefringence. J Cell Sci. 1993;105:317–31.

    PubMed  Google Scholar 

  • Hackett S, Hamzah J, Davis TM, Pierre TGS. Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim Biophys Acta. 2009;1792(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S, Date M. Orientation of erythrocytes in a strong static magnetic field. Blood. 1993;82(4):1328–34.

    CAS  PubMed  Google Scholar 

  • Higashi T, Yamagishi A, Takeuchi T, Date M. Effects of static magnetic-fields on erythrocyte rheology. Bioelectrochem Bioenerg. 1995;36(2):101–8.

    Article  CAS  Google Scholar 

  • Higashi T, Sagawa S, Ashida N, Takeuchi T. Orientation of glutaraldehyde-fixed erythrocytes in strong static magnetic fields. Bioelectromagnetics. 1996;17(4):335–8.

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Ashida N, Takeuchi T. Orientation of blood cells in static magnetic field. Physica B. 1997;237:616–20.

    Article  Google Scholar 

  • Hirose H, Nakahara T, Miyakoshi J. Orientation of human glioblastoma cells embedded in type I collagen, caused by exposure to a 10 T static magnetic field. Neurosci Lett. 2003;338(1):88–90.

    Article  CAS  PubMed  Google Scholar 

  • Holley RW, Armour R, Baldwin JH, Brown KD, Yeh YC. Density-dependent regulation of growth of Bsc-1 cells in cell-culture – control of growth by serum factors. Proc Natl Acad Sci U S A. 1977;74(11):5046–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hore PJ. Are biochemical reactions affected by weak magnetic fields? Proc Natl Acad Sci U S A. 2012;109(5):1357–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh CH, Lee MC, Tsai-Wu JJ, Chen MH, Lee HS, Chiang H, Herbert Wu CH, Jiang CC. Deleterious effects of MRI on chondrocytes. Osteoarthr Cartil. 2008;16(3):343–51.

    Article  PubMed  Google Scholar 

  • Hsieh SC, Tsao JT, Lew WZ, Chan YH, Lee LW, Lin CT, Huang YK, Huang HM. Static magnetic field attenuates lipopolysaccharide-induced inflammation in pulp cells by affecting cell membrane stability. ScientificWorldJournal. 2015;2015:492683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu SH, Chang JC. The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology. 2010;62(2):143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iachininoto MG, Camisa V, Leone L, Pinto R, Lopresto V, Merla C, Giorda E, Carsetti R, Zaffina S, Podda MV, Teofili L, Grassi C. Effects of exposure to gradient magnetic fields emitted by nuclear magnetic resonance devices on clonogenic potential and proliferation of human hematopoietic stem cells. Bioelectromagnetics. 2016;37(4):201–11.

    Article  CAS  PubMed  Google Scholar 

  • Itegin M, Gunay I, Logoglu G, Isbir T. Effects of static magnetic field on specific adenosine-5′- triphosphatase activities and bioelectrical and biomechanical properties in the rat diaphragm muscle. Bioelectromagnetics. 1995;16(3):147–51.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaka M, Ueno S. Detection of intracellular macromolecule behavior under strong magnetic fields by linearly polarized light. Bioelectromagnetics. 2003a;24(8):564–70.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaka M, Ueno S. Polarized light transmission of smooth muscle cells during magnetic field exposures. J Appl Phys. 2003b;93(10):6701–3.

    Article  CAS  Google Scholar 

  • Iwasaka M, Ueno S, Tsuda H. Diamagnetic properties of fibrin and fibrinogen. IEEE Trans Magn. 1994;30(6):4695–7.

    Article  CAS  Google Scholar 

  • Iwasaka M, Miyakoshi J, Ueno S. Magnetic field effects on assembly pattern of smooth muscle cells. Vitro Cell Dev Biol-Animal. 2003;39(3–4):120–3.

    Article  Google Scholar 

  • Jia C, Zhou Z, Liu R, Chen S, Xia R. EGF receptor clustering is induced by a 0.4 mT power frequency magnetic field and blocked by the EGF receptor tyrosine kinase inhibitor PD153035. Bioelectromagnetics. 2007;28(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  • Karl S, Davis TME, St Pierre TG. Parameterization of high magnetic field gradient fractionation columns for applications with Plasmodium falciparum infected human erythrocytes. Malar J. 2010;9

    Google Scholar 

  • Kasetsirikul S, Buranapong J, Srituravanich W, Kaewthamasorn M, Pimpin A. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar J. 2016;15

    Google Scholar 

  • Kim S, Im WS, Kang L, Lee ST, Chu K, Kim BI. The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J Neurosci Methods. 2008;174(1):91–6.

    Article  PubMed  Google Scholar 

  • Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget 2016.

    Google Scholar 

  • Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288–95.

    Article  CAS  PubMed  Google Scholar 

  • Kotani H, Iwasaka M, Ueno S, Curtis A. Magnetic orientation of collagen and bone mixture. J Appl Phys. 2000;87(9):6191–3.

    Article  CAS  Google Scholar 

  • Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, Nakamura K, Hoshi K. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res. 2002;17(10):1814–21.

    Article  PubMed  Google Scholar 

  • Kurzeja E, Synowiec-Wojtarowicz A, Stec M, Glinka M, Gawron S, Pawlowska-Goral K. Effect of a static magnetic fields and fluoride ions on the antioxidant defense system of mice fibroblasts. Int J Mol Sci. 2013;14(7):15017–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. Static magnetic fields enhance dental pulp stem cell proliferation by activating The p38 MAPK pathway as its putative mechanism. J Tissue Eng Regen Med. 2016.

    Google Scholar 

  • Li Y, Song LQ, Chen MQ, Zhang YM, Li J, Feng XY, Li W, Guo W, Jia G, Wang H, Yu J. Low strength static magnetic field inhibits the proliferation, migration, and adhesion of human vascular smooth muscle cells in a restenosis model through mediating integrins beta1-FAK, Ca2+ signaling pathway. Ann Biomed Eng. 2012;40(12):2611–8.

    Article  PubMed  Google Scholar 

  • Liboff AR, Williams Jr T, Strong DM, Wistar Jr R. Time-varying magnetic fields: effect on DNA synthesis. Science. 1984;223(4638):818–20.

    Article  CAS  PubMed  Google Scholar 

  • Limoli CL, Rola R, Giedzinski E, Mantha S, Huang TT, Fike JR. Cell-density-dependent regulation of neural precursor cell function. Proc Natl Acad Sci U S A. 2004;101(45):16052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Wei PL, Chang WJ, Huang YK, Feng SW, Lin CT, Lee SY, Huang HM. Slow freezing coupled static magnetic field exposure enhances cryopreservative efficiency – a study on human erythrocytes. PLoS One. 2013;8(3):e58988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Qi H, Sun RG, Chen WF. An investigation into the combined effect of static magnetic fields and different anticancer drugs on K562 cell membranes. Tumori. 2011;97(3):386–92.

    PubMed  Google Scholar 

  • Luo Y, Ji XM, Liu JJ, Li ZY, Wang WC, Chen W, Wang JF, Liu QS, Zhang X. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry. 2016;109:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Macieira A. Influence of cell density on growth inhibition of human fibroblasts in vitro. Proc Soc Exp Biol Med. 1967;125(2):548.

    Article  Google Scholar 

  • Malinin GI, Gregory WD, Morelli L, Sharma VK, Houck JC. Evidence of morphological and physiological transformation of mammalian cells by strong magnetic fields. Science. 1976;194(4267):844–6.

    Article  CAS  PubMed  Google Scholar 

  • Maredziak M, Tomaszewski K, Polinceusz P, Lewandowski D, Marycz K. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Electromagn Biol Med. 2017;36(1):45–54.

    CAS  PubMed  Google Scholar 

  • Maret GS, Schickfus MV, Mayer A, Dransfeld K. Orientation of nucleic acids in high magnetic fields. Phys Rev Lett. 1975;35(6):397–400.

    Article  CAS  Google Scholar 

  • Maret G. Recent biophysical studies in high magnetic-fields. Physica B. 1990;164:205–12.

    Article  Google Scholar 

  • Martino CF, Castello PR. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields. PLoS One. 2011;6(8):e22753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martino CF, Perea H, Hopfner U, Ferguson VL, Wintermantel E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 2010;31(4):296–301.

    CAS  PubMed  Google Scholar 

  • McCann J, Dietrich F, Rafferty C, Martin AO. A critical review of the genotoxic potential of electric and magnetic fields. Mutat Res. 1993;297(1):61–95.

    Article  CAS  PubMed  Google Scholar 

  • Mcclain DA, Edelman GM. Density-dependent stimulation and inhibition of cell-growth by agents that disrupt microtubules. Proc Nat Acad Sci USA Biol Sci. 1980;77(5):2748–52.

    Article  CAS  Google Scholar 

  • Melville D, Paul F, Roath S. Direct magnetic separation of red-cells from whole-blood. Nature. 1975;255(5511):706. –706

    Article  CAS  PubMed  Google Scholar 

  • Minoura I, Muto E. Dielectric measurement of individual microtubules using the electroorientation method. Biophys J. 2006;90(10):3739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol. 2005;87(223):213.

    Article  CAS  PubMed  Google Scholar 

  • Miyakoshi J. The review of cellular effects of a static magnetic field. Sci Technol Adv Mater. 2006;7(4):305–7.

    Article  CAS  Google Scholar 

  • Mo WC, Liu Y, Cooper HM, He RQ. Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics. 2012;33(3):238–46.

    Article  CAS  PubMed  Google Scholar 

  • Mo WC, Zhang ZJ, Liu Y, Bartlett PF, He RQ. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression. PLoS One. 2013;8(1):e54775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo WC, Zhang ZJ, Wang DL, Liu Y, Bartlett PF, He RQ. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Sci Rep. 2016;6:22624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LR, Fujioka H, Williams PS, Chalmers JJ, Grimberg B, Zimmerman PA, Zborowski M. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J. 2006;20(6):747–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LR, Nehl F, Dorn J, Chalmers JJ, Zborowski M. Open gradient magnetic red blood cell sorter evaluation on model cell mixtures. IEEE Trans Magn. 2013;49(1):309–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris CE, Skalak TC. Acute exposure to a moderate strength static magnetic field reduces edema formation in rats. Am J Physiol Heart Circ Physiol. 2008;294(1):H50–7.

    Article  CAS  PubMed  Google Scholar 

  • Murayama M. Orientation of sickled erythrocytes in a magnetic field. Nature. 1965;206(982):420–2.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology. 2002;224(3):817–22.

    Article  PubMed  Google Scholar 

  • Nam J, Huang H, Lim H, Lim C, Shin S. Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal Chem. 2013;85(15):7316–23.

    Article  CAS  PubMed  Google Scholar 

  • Nuccitelli S, Cerella C, Cordisco S, Albertini MC, Accorsi A, De Nicola M, D’Alessio M, Radogna F, Magrini A, Bergamaschi A, Ghibelli L. Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann N Y Acad Sci. 2006;1090:217–25.

    Article  CAS  PubMed  Google Scholar 

  • Ogiue-Ikeda M, Ueno S. Magnetic cell orientation depending on cell type and cell density. IEEE Trans Magn. 2004;40(4):3024–6.

    Article  Google Scholar 

  • Okano H, Ohkubo C. Exposure to a moderate intensity static magnetic field enhances the hypotensive effect of a calcium channel blocker in spontaneously hypertensive rats. Bioelectromagnetics. 2005;26(8):611–23.

    Article  CAS  PubMed  Google Scholar 

  • Olsson G, Belyaev IY, Helleday T, Harms-Ringdahl M. ELF magnetic field affects proliferation of SPD8/V79 Chinese hamster cells but does not interact with intrachromosomal recombination. Mutat Res. 2001;493(1–2):55–66.

    Article  CAS  PubMed  Google Scholar 

  • Owen CS. High gradient magnetic separation of erythrocytes. Biophys J. 1978;22(2):171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacini S, Aterini S, Pacini P, Ruggiero C, Gulisano M, Ruggiero M. Influence of static magnetic field on the antiproliferative effects of vitamin D on human breast cancer cells. Oncol Res. 1999a;11(6):265–71.

    CAS  PubMed  Google Scholar 

  • Pacini S, Vannelli GB, Barni T, Ruggiero M, Sardi I, Pacini P, Gulisano M. Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability. Neurosci Lett. 1999b;267(3):185–8.

    Article  CAS  PubMed  Google Scholar 

  • Pacini S, Gulisano M, Peruzzi B, Sgambati E, Gheri G, Gheri Bryk S, Vannucchi S, Polli G, Ruggiero M. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detect Prev. 2003;27(5):327–32.

    Article  PubMed  Google Scholar 

  • Papatheofanis FJ. Use of calcium-channel antagonists as magnetoprotective agents. Radiat Res. 1990;122(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  • Papatheofanis FJ, Papatheofanis BJ. Short-term effect of exposure to intense magnetic fields on hematologic indices of bone metabolism. Investig Radiol. 1989;24(3):221–3.

    Article  CAS  Google Scholar 

  • Paul F, Roath S, Melville D, Warhurst DC, Osisanya JOS. Separation of malaria-infected erythrocytes from whole-blood – use of a selective high-gradient magnetic separation technique. Lancet. 1981;2(8237):70–1.

    Article  CAS  PubMed  Google Scholar 

  • Pauling L. Diamagnetic anisotropy of the peptide group. Proc Natl Acad Sci U S A. 1979;76(5):2293–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22:210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov E, Martinac B. Modulation of channel activity and gadolinium block of MscL by static magnetic fields. Eur Biophys J. 2007;36(2):95–105.

    Article  CAS  PubMed  Google Scholar 

  • Pless M, Weinberg U. Tumor treating fields: concept, evidence and future. Expert Opin Investig Drugs. 2011;20(8):1099–106.

    Article  CAS  PubMed  Google Scholar 

  • Prina-Mello A, Farrell E, Prendergast PJ, Campbell V, Coey JM. Influence of strong static magnetic fields on primary cortical neurons. Bioelectromagnetics. 2006;27(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  • Raylman RR, Clavo AC, Wahl RL. Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. Bioelectromagnetics. 1996;17(5):358–63.

    Article  CAS  PubMed  Google Scholar 

  • Reddig A, Fatahi M, Friebe B, Guttek K, Hartig R, Godenschweger F, Roggenbuck D, Ricke J, Reinhold D, Speck O. Analysis of DNA double-strand breaks and cytotoxicity after 7 Tesla magnetic resonance imaging of isolated human lymphocytes. PLoS One. 2015;10(7):e0132702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romeo S, Sannino A, Scarfi MR, Massa R, d’Angelo R, Zeni O. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field. Sci Rep. 2016;6:19398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen AD. Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta. 1996;1282(1):149–55.

    Article  PubMed  Google Scholar 

  • Rosen AD, Chastney EE. Effect of long term exposure to 0.5 T static magnetic fields on growth and size of GH3 cells. Bioelectromagnetics. 2009;30(2):114–9.

    Article  PubMed  Google Scholar 

  • Rozanski C, Belton M, Prato FS, Carson JJ. Real-time measurement of cytosolic free calcium concentration in DEM-treated HL-60 cells during static magnetic field exposure and activation by ATP. Bioelectromagnetics. 2009;30(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Gomez MJ, Sendra-Portero F, Martinez-Morillo M. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int J Radiat Biol. 2010;86(7):602–11.

    Article  CAS  PubMed  Google Scholar 

  • Samsonov A, Popov SV. The effect of a 94 GHz electromagnetic field on neuronal microtubules. Bioelectromagnetics. 2013;34(2):133–44.

    Article  PubMed  Google Scholar 

  • Sarvestani AS, Abdolmaleki P, Mowla SJ, Ghanati F, Heshmati E, Tavasoli Z, Jahromi AM. Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells. Micron. 2010;41(2):101–4.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yamaguchi H, Miyamoto H, Kinouchi Y. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochim Biophys Acta. 1992;1136(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  • Schrader T, Kleine-Ostmann T, Munter K, Jastrow C, Schmid E. Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal. Bioelectromagnetics. 2011;32(4):291–301.

    Article  PubMed  Google Scholar 

  • Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.

    Article  CAS  PubMed  Google Scholar 

  • Schumacker PT. Reactive oxygen species in cancer: a dance with the devil. Cancer Cell. 2015;27(2):156–7.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Nikulenkov F, Zawacka-Pankau J, Li H, Gabdoulline R, Xu J, Eriksson S, Hedstrom E, Issaeva N, Kel A, Arner ES, Selivanova G. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. 2014;21(4):612–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short WO, Goodwill L, Taylor CW, Job C, Arthur ME, Cress AE. Alteration of human tumor cell adhesion by high-strength static magnetic fields. Investig Radiol. 1992;27(10):836–40.

    Article  CAS  Google Scholar 

  • Simko M. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem. 2007;14(10):1141–52.

    Article  CAS  PubMed  Google Scholar 

  • Stolfa S, Skorvanek M, Stolfa P, Rosocha J, Vasko G, Sabo J. Effects of static magnetic field and pulsed electromagnetic field on viability of human chondrocytes in vitro. Physiol Res. 2007;56(Suppl 1):S45–9.

    PubMed  Google Scholar 

  • Sullivan K, Balin AK, Allen RG. Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics. 2011;32(2):140–7.

    Article  PubMed  Google Scholar 

  • Sun W, Shen X, Lu D, Lu D, Chiang H. Superposition of an incoherent magnetic field inhibited EGF receptor clustering and phosphorylation induced by a 1.8 GHz pulse-modulated radiofrequency radiation. Int J Radiat Biol. 2013;89(5):378–83.

    Article  CAS  PubMed  Google Scholar 

  • Surma SV, Belostotskaya GB, Shchegolev BF, Stefanov VE. Effect of weak static magnetic fields on the development of cultured skeletal muscle cells. Bioelectromagnetics. 2014;35(8):537–46.

    Article  CAS  PubMed  Google Scholar 

  • Swat A, Dolado I, Rojas JM, Nebreda AR. Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol Cell Biol. 2009;29(12):3332–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Tsukatani Y, Suzuki K. Density-dependent inhibition of growth by E-cadherin-mediated cell adhesion. Mol Biol Cell. 1996;7:2466. –2466

    Google Scholar 

  • Takashima Y, Miyakoshi J, Ikehata M, Iwasaka M, Ueno S, Koana T. Genotoxic effects of strong static magnetic fields in DNA-repair defective mutants of Drosophila melanogaster. J Radiat Res. 2004;45(3):393–7.

    Article  PubMed  Google Scholar 

  • Takeuchi T, Mizuno T, Higashi T, Yamagishi A, Date M. Orientation of red-blood-cCells in high magnetic-field. J Magn Magn Mater. 1995;140:1462–3.

    Article  Google Scholar 

  • Tenuzzo B, Chionna A, Panzarini E, Lanubile R, Tarantino P, Di Jeso B, Dwikat M, Dini L. Biological effects of 6 mT static magnetic fields: a comparative study in different cell types. Bioelectromagnetics. 2006;27(7):560–77.

    Article  CAS  PubMed  Google Scholar 

  • Teodori L, Giovanetti A, Albertini MC, Rocchi M, Perniconi B, Valente MG, Coletti D. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells. J Radiat Res. 2014;55(2):218–27.

    Article  CAS  PubMed  Google Scholar 

  • Tofani S, Barone D, Cintorino M, de Santi MM, Ferrara A, Orlassino R, Ossola P, Peroglio F, Rolfo K, Ronchetto F. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics. 2001;22(6):419–28.

    Article  CAS  PubMed  Google Scholar 

  • Tonini R, Baroni MD, Masala E, Micheletti M, Ferroni A, Mazzanti M. Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation. Biophys J. 2001;81(5):2580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torbet J, Ronziere MC. Magnetic alignment of collagen during self-assembly. Biochem J. 1984;219(3):1057–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torbet J, Freyssinet JM, Hudryclergeon G. Oriented fibrin gels formed by polymerization in strong magnetic-fields. Nature. 1981;289(5793):91–3.

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–52.

    Article  CAS  PubMed  Google Scholar 

  • Ueno S. Studies on magnetism and bioelectromagnetics for 45 years: from magnetic analog memory to human brain stimulation and imaging. Bioelectromagnetics. 2012;33(1):3–22.

    Article  PubMed  Google Scholar 

  • Ueno S, Harada K. Redistribution of dissolved-oxygen concentration under strong dc magnetic-fields. IEEE Trans Magn. 1982;18(6):1704–6.

    Article  Google Scholar 

  • Ueno S, Iwasaka M, Kitajima T. Redistribution of dissolved-oxygen concentration under magnetic-fields up to 8-T. J Appl Phys. 1994;75(10):7174–6.

    Article  Google Scholar 

  • Ueno S, Iwasaka M, Furukawa G. Dynamic behavior of dissolved-oxygen under magnetic-fields. IEEE Trans Magn. 1995;31(6):4259–61.

    Article  CAS  Google Scholar 

  • Umeno A, Kotani H, Iwasaka M, Ueno S. Quantification of adherent cell orientation and morphology under strong magnetic fields. IEEE Trans Magn. 2001;37(4):2909–11.

    Article  Google Scholar 

  • Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D. Cellular disorders induced by high magnetic fields. J Magn Reson Imaging. 2005;22(3):334–40.

    Article  PubMed  Google Scholar 

  • Valles JM. Model of magnetic field-induced mitotic apparatus reorientation in frog eggs. Biophys J. 2002;82(3):1260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valles JM, Wasserman S, Schweidenback C, Edwardson J, Denegre J, Mowry K. Processes that occur before second cleavage determine third cleavage orientation in Xenopus. Exp Cell Res. 2002;274:112–8.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev PM, Dronzine RT, Vassileva MP, Georgiev GA. Parallel arrays of microtubules formed in electric and magnetic fields. Biosci Rep. 1982;2(12):1025–9.

    Article  CAS  PubMed  Google Scholar 

  • Vergallo C, Dini L, Szamosvolgyi Z, Tenuzzo BA, Carata E, Panzarini E, Laszlo JF. In vitro analysis of the anti-inflammatory effect of inhomogeneous static magnetic field-exposure on human macrophages and lymphocytes. PLoS One. 2013;8(8):e72374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walleczek J, Budinger TF. Pulsed magnetic-field effects on calcium signaling in lymphocytes – dependence on cell status and field intensity. FEBS Lett. 1992;314(3):351–5.

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Wang XS, Xiao R, Liu Y, He RQ. Tubulin assembly is disordered in a hypogeomagnetic field. Biochem Biophys Res Commun. 2008;376(2):363–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Che PL, Du J, Ha B, Yarema KJ. Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS One. 2010;5(11):e13883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Hao F, Ding C, Yang Z, Shang P. Effects of static magnetic field on cell biomechanical property and membrane ultrastructure. Bioelectromagnetics. 2014;35(4):251–61.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Xiang B, Deng J, Freed DH, Arora RC, Tian G. Inhibition of viability, proliferation, cytokines secretion, surface antigen expression, and adipogenic and osteogenic differentiation of adipose-derived stem Cells by seven-day exposure to 0.5 T static magnetic fields. Stem Cells Int. 2016;2016:7168175.

    PubMed  PubMed Central  Google Scholar 

  • Williams PA, Ingebretsen RJ, Dawson RJ. 14.6 mT ELF magnetic field exposure yields no DNA breaks in model system Salmonella, but provides evidence of heat stress protection. Bioelectromagnetics. 2006;27(6):445–50.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi A, Takeuchi T, Higashi T, Date M. Magnetic-field effect on the polymerization of fibrin fibers. Physica B. 1990;164(1–2):222–8.

    Article  CAS  Google Scholar 

  • Yamagishi A, Takeuchi T, Higashi T, Date M. Diamagnetic orientation of blood-cells in high magnetic-field. Physica B. 1992;177(1–4):523–6.

    Article  Google Scholar 

  • Yan J, Dong L, Zhang B, Qi N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med. 2010;29(4):165–76.

    Article  CAS  PubMed  Google Scholar 

  • Yeh SR, Yang JW, Lee YT, Tsai LY. Static magnetic field expose enhances neurotransmission in crayfish nervous system. Int J Radiat Biol. 2008;84(7):561–7.

    Article  CAS  PubMed  Google Scholar 

  • Yost MG, Liburdy RP. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 1992;296(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  • Zablotskii V, Dejneka A, Kubinova S, Le-Roy D, Dumas-Bouchiat F, Givord D, Dempsey NM, Sykova E. Life on magnets: stem cell networking on micro-magnet arrays. PLoS One. 2013;8(8):e70416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zablotskii V, Polyakova T, Lunov O, Dejneka A. How a high-gradient magnetic field could affect cell life. Sci Rep. 2016;6:37407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN. Red blood cell magnetophoresis. Biophys J. 2003;84(4):2638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ding C, Ren L, Zhou Y, Shang P. The effects of static magnetic fields on bone. Prog Biophys Mol Biol. 2014a;114(3):146–52.

    Article  PubMed  Google Scholar 

  • Zhang J, Ding C, Shang P. Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields. Biol Trace Elem Res. 2014b;162(153):–157.

    Google Scholar 

  • Zhang L, Yang XX, Liu JJ, Luo Y, Li ZY, Ji XM, Wang WC, Zhang X. 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci Bull. 2015;60(24):2120–8.

    Article  CAS  Google Scholar 

  • Zhang L, Wang J, Wang H, Wang W, Li Z, Liu J, Yang X, Ji X, Luo Y, Hu C, Hou Y, He Q, Fang J, Wang J, Liu Q, Li G, Lu Q, Zhang X. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation. Oncotarget. 2016;7(27):41527–39.

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Meng X, Ding C, Xie L, Yang P, Shang P. Regulation of osteoclast differentiation by static magnetic fields. Electromagn Biol Med. 2017a;36(1):8–19.

    CAS  PubMed  Google Scholar 

  • Zhang L, Ji X, Yang X, Zhang X. Cell type- and density-dependent effect of 1 T Static Magnetic Field on cell proliferation. Oncotarget (epub ahead of print.). 2017b; doi: 10.18632/oncotarget.14480.

  • Zhang L, Hou Y, Li Z, Ji X, Wang Z, Wang H, Tian X, Yu F, Yang Z, Pi L, Mitchison T, Lu Q, Zhang X. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. elife. 2017c; 6: e22911 doi: http://dx.doi.org/10.7554/eLife.22911.

  • Zhao Y, Zhan Q. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics ofmitosis and meiosis. Theor Biol Med Model. 2012;9:26.

    Google Scholar 

  • Zhao M, Forrester JV, McCaig CD. A small, physiological electric field orients cell division. Proc Natl Acad Sci U S A. 1999;96(9):4942–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Chen S, Zhao Y, Zhu L. Effects of 13T Static Magnetic Fields (SMF) in the cell cycle distribution and cell viability in immortalized hamster cells and human primary fibroblasts cells. Plasma Sci Technol. 2010;12(1):123–8.

    Article  CAS  Google Scholar 

  • Zhao G, Chen S, Wang L, Zhao Y, Wang J, Wang X, Zhang W, Wu R, Wu L, Wu Y, Xu A. Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: role of reactive oxygen species. Bioelectromagnetics. 2011;32(2):94–101.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Yao G, Zhang J, Chang Z. CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK. Biochem Biophys Res Commun. 2002;296(4):1013–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, X., Yarema, K., Xu, A. (2017). Impact of Static Magnetic Fields (SMFs) on Cells. In: Biological Effects of Static Magnetic Fields. Springer, Singapore. https://doi.org/10.1007/978-981-10-3579-1_4

Download citation

Publish with us

Policies and ethics