Skip to main content

The Potential Tissues and Their Properties

  • Chapter
  • First Online:
Tissue Repair
  • 603 Accesses

Abstract

Tissue engineering represents one of the most investigated biomedical fields, as the use of a combination of cells, engineering and materials methods, and suitable biochemical and physicochemical factors to improve or replace biological tissues. The development of biological substitutes that restore, maintain, or improve tissue function could significantly improve the life quality of numerous patients affected by diseases and yet untreatable health conditions. In recent years, numerous studies have reported the production of specialized materials able to pamper tissue engineering and to allow the development of novel therapeutic approaches for regenerative medicine. In order to precisely control of the scaffolds architecture like size, shape, inter connectivity, branching, geometry, and orientation to mimic the desired tissues, the need for knowledge of tissue properties remains essential so that each may be used with maximum understanding the properties of tissue and to greatest advantage. This chapter presents an overview of the biochemical and physical properties of main hard and soft tissues, including bones, teeth, cartilages, blood vessels, liver, nerves, tendons, and ligaments. For each case, the properties which are used to describe the tissue are reviewed, with emphasis being placed on their classification, structure, functions, and related diseases. Subsequently, tissue engineering concerning each tissue are also included. Intended as a broad-ranging reference, this chapter gives the bioengineer, physicist, or physiologist access to a literature which may not be known in detail. It will also be of value for those concerned with the study of tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24(24):4353–64.

    Article  CAS  PubMed  Google Scholar 

  2. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–80.

    Article  CAS  PubMed  Google Scholar 

  3. Putnam AJ, Mooney DJ. Tissue engineering using synthetic extracellular matrices. Nat Med. 1996;2(7):824.

    Article  CAS  PubMed  Google Scholar 

  4. Heath CA. Cells for tissue engineering. Trends Biotechnol. 2000;18(1):17–9.

    Article  CAS  PubMed  Google Scholar 

  5. Chen GP, Takashi U, Tetsuya T. Scaffold design for tissue engineering. Macromol Biosci. 2002;2(2):67–77.

    Article  CAS  Google Scholar 

  6. Hutmacher DW, GohJ CH, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singap. 2001;30(2):183–91.

    CAS  PubMed  Google Scholar 

  7. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I Traditional factors. Tissue Eng. 2001;7(6):679–89.

    Article  CAS  PubMed  Google Scholar 

  8. Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Ectopic bone formation by marrow stromal osteoblast transplantation using poly (DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res. 1997;36(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sims DC, Butler PEM, Cao YL, Randolph MA, Black A, Yaremchuk MJ. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg. 1998;101(6):1580–5.

    Article  CAS  PubMed  Google Scholar 

  10. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100(2):297–302.

    Article  CAS  PubMed  Google Scholar 

  11. Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res. 1994;28(8):891–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kneser U, Kaufmann PM, Fiegel HC, Pollok JM, Kluth D, Herbst H, Rogiers X. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J Biomed Mater Res. 1999;47(4):494–503.

    Article  CAS  PubMed  Google Scholar 

  13. Hadlock T, Sundback C, Hunter D, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 2000;6(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  14. Lin VS, Lee MC, O'Neal S, McKean J, Sung KP. Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng. 1999;5(5):443–51.

    Article  CAS  PubMed  Google Scholar 

  15. Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013;2:447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev. 2012;8(3):891–7.

    Article  CAS  PubMed  Google Scholar 

  17. Wojcicka A, Bassett JH, Williams GR. Mechanisms of action of thyroid hormones in the skeleton. Biochim Biophys Acta. 2013;1830(7):3979–86.

    Article  CAS  PubMed  Google Scholar 

  18. Berendsen AD, Olsen BR. Bone development. Bone. 2015;80:14–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development. 2016;143(15):2706–15.

    Article  CAS  PubMed  Google Scholar 

  20. Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture healing in the elderly: a review. Maturitas. 2016;92:49–55.

    Article  PubMed  Google Scholar 

  21. Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gupta A, March L. Treating osteoporosis. Aust Prescr. 2016;39(2):40–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Monument MJ, Jones KB. Molecular characterization of bone tumors and implications for treatment and prognosis. J Natl Compr Cancer Netw. 2014;12(2):214–20.

    Article  CAS  Google Scholar 

  24. Sheu A, Diamond T. Bone mineral density: testing for osteoporosis. Aust Prescr. 2016;39(2):35–9.

    Google Scholar 

  25. Panetta NJ, Gupta DM, Longaker MT. Bone regeneration and repair. Curr Stem Cell Res Ther. 2010;5(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  26. Schroeder JE, Mosheiff R. Tissue engineering approaches for bone repair: concepts and evidence. Injury. 2011;42(6):609–13.

    Article  PubMed  Google Scholar 

  27. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh RS, Kaur N, Rana V, Kennedy JF. Recent insights on applications of pullulan in tissue engineering. Carbohydr Polym. 2016;153:455–62.

    Article  CAS  PubMed  Google Scholar 

  29. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  CAS  PubMed  Google Scholar 

  30. Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering–a review. J Biomed Nanotechnol. 2014;10(10):3124–40.

    Article  CAS  PubMed  Google Scholar 

  31. Dhivya S, Ajita J, Selvamurugan N. Metallic nanomaterials for bone tissue engineering. J Biomed Nanotechnol. 2015;11(10):1675–700.

    Article  CAS  PubMed  Google Scholar 

  32. Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016;31:1–16.

    Article  CAS  PubMed  Google Scholar 

  33. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V. Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. 2015;2015:804213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. de Misquita MR, Bentini R, Goncalves F. The performance of bone tissue engineering scaffolds in in vivo animal models: a systematic review. J Biomater Appl. 2016;31(5):625–36.

    Article  PubMed  Google Scholar 

  35. Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells. 2014;6(2):144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mercado-Pagán ÁE, Stahl AM, Shanjani Y, Yang Y. Vascularization in bone tissue engineering constructs. Ann Biomed Eng. 2015;43(3):718–29.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang Y, Niu X, Song W, Guan C, Feng Q, Fan Y. Combined effects of mechanical strain and hydroxyapatite/collagen composite on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells. J Nanomater. 2013;2013(2013):343909.

    Google Scholar 

  38. Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release. 2016;225:152–69.

    Article  CAS  PubMed  Google Scholar 

  39. Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev. 2015;84:45–67.

    Article  CAS  PubMed  Google Scholar 

  40. Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE, Kim HW, Wall I. Administration of growth factors for bone regeneration. Regen Med. 2012;7(3):369–85.

    Article  CAS  PubMed  Google Scholar 

  41. Gardel LS, Serra LA, Reis RL, Gomes ME. Use of perfusion bioreactors and large animal models for long bone tissue engineering. Tissue Eng Part B Rev. 2014;20(2):126–46.

    Article  CAS  PubMed  Google Scholar 

  42. Ceccarelli G, Bloise N, Vercellino M, Battaglia R, Morgante L, De Angelis MG, Imbriani M, Visai L. In vitro osteogenesis of human stem cells by using a three-dimensional perfusion bioreactor culture system: a review. Recent Pat Drug Deliv Formul. 2013;7(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  43. Costa PF, Martins A, Neves NM, Gomes ME, Reis RL. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. Tissue Eng Part B Rev. 2014;20(6):567–77.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res. 2015;56(3):175–94.

    Article  CAS  PubMed  Google Scholar 

  45. Huo B. An inhomogeneous and anisotropic constitutive model of human dentin. J Biomech. 2005;38(3):587–94.

    Article  PubMed  Google Scholar 

  46. Murshid SA. The role of osteocytes during experimental orthodontic tooth movement: a review. Arch Oral Biol. 2016;73:25–33.

    Article  PubMed  Google Scholar 

  47. Isola G, Matarese G, Cordasco G, Perillo L, Ramaglia L. Mechanobiology of the tooth movement during the orthodontic treatment: a literature review. Minerva Stomatol. 2016;65(5):299–327.

    PubMed  Google Scholar 

  48. Steindorff MM, Lehl H, Winkel A, Stiesch M. Innovative approaches to regenerate teeth by tissue engineering. Arch Oral Biol. 2014;59(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  49. Yildirim S, Fu SY, Kim K, Zhou H, Lee CH, Li A, Kim SG, Wang S, Mao JJ. Tooth regeneration: a revolution in stomatology and evolution in regenerative medicine. Int J Oral Sci. 2011;3(3):107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY, Zhou H, Chen L, Mao JJ. Biomaterial selection for tooth regeneration. Tissue Eng Part B Rev. 2011;17(5):373–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013;92(11):970–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Surendran S, Sivamurthy G. Current applications and future prospects of stem cells in dentistry. Dent Update. 2015;42(6):556–8. 560–1

    PubMed  Google Scholar 

  53. Galler KM, D'Souza RN, Hartgerink JD, Schmalz G. Scaffolds for dental pulp tissue engineering. Adv Dent Res. 2011;23(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  54. Piva E, Silva AF, Nör JE. Functionalized scaffolds to control dental pulp stem cell fate. J Endod. 2014;40(4 Suppl):S33–40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Albuquerque MT, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res. 2014;93(12):1222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aigner T, Sachse A, Gebhard PM, Roach HI. Osteoarthritis: pathobiology-targets and ways for therapeutic intervention. Adv Drug Deliv Rev. 2006;58(2):128–49.

    Article  CAS  PubMed  Google Scholar 

  57. Cole AG. A review of diversity in the evolution and development of cartilage: the search for the origin of the chondrocyte. Eur Cell Mater. 2011;21:122–9.

    Article  CAS  PubMed  Google Scholar 

  58. Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays. 2000;22:138–47.

    Article  CAS  PubMed  Google Scholar 

  59. Lee P, Tran K, Chang W, Shelke NB, Kumbar SG, Yu X. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration. J Biomed Nanotechnol. 2014;10(8):1469–79.

    Article  CAS  PubMed  Google Scholar 

  60. Rothrauff BB, Tuan RS. Cellular therapy in bone-tendon interface regeneration. Organ. 2014;10(1):13–28.

    Google Scholar 

  61. Nam S, Cho W, Cho H, Lee J, Lee E, Son Y. Xiphoid process-derived chondrocytes: a novel cell source for elastic cartilage regeneration. Stem Cells Transl Med. 2014;3(11):1381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Temple DK, Cederlund AA, Lawless BM, Aspden RM, Espino DM. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends. BMC Musculoskelet Disord. 2016;17(1):419.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yao JQ, Seedhom BB. Mechanical conditioning of articular cartilage to prevalent stresses. Br J Rheumatol. 1993;32:956–65.

    Article  CAS  PubMed  Google Scholar 

  64. Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115(3):622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayes WC, Mockros LF. Viscoelastic properties of human articular cartilage. J Appl Physiol. 1971;31(4):562–8.

    CAS  PubMed  Google Scholar 

  66. Chen C, Tambe DT, Deng L, Yang L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Phys Cell Physiol. 2013;305(12):C1202–8.

    Article  CAS  Google Scholar 

  67. Mahir L, Belhaj K, Zahi S, Azanmasso H, Lmidmani F, El Fatimi A. Impact of knee osteoarthritis on the quality of life. Ann Phys Rehabil Med. 2016;59S:e159.

    Article  PubMed  Google Scholar 

  68. Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 2016;4:16028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tran G, Smith TO, Grice A, Kingsbury SR, McCrory P, Conaghan PG. Does sports participation (including level of performance and previous injury) increase risk of osteoarthritis? A systematic review and meta-analysis. Br J Sports Med. 2016;pii:bjsports-2016-096142.

    Google Scholar 

  70. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, Hawker GA, Henrotin Y, Hunter DJ, Kawaguchi H, Kwoh K, Lohmander S, Rannou F, Roos EM, Underwood M. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014;22(3):363–88.

    Article  CAS  PubMed  Google Scholar 

  71. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev. 2006;58(2):300–22.

    Article  CAS  PubMed  Google Scholar 

  72. Baghaban Eslaminejad M, Malakooty PE. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World J Stem Cells. 2014;6(3):344–54.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Panadero JA, Lanceros-Mendez S, Ribelles JL. Differentiation of mesenchymal stem cells for cartilage tissue engineering: individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater. 2016;33:1–12.

    Article  CAS  PubMed  Google Scholar 

  74. Ge Y, Gong YY, Xu Z, Lu Y, Fu W. The application of sheet technology in cartilage tissue engineering. Tissue Eng Part B Rev. 2016;22(2):114–24.

    Article  PubMed  Google Scholar 

  75. Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47–56.

    Article  CAS  PubMed  Google Scholar 

  76. Rampichová M, Filová E, Varga F, Lytvynets A, Prosecká E, Koláčná L, Motlík J, Nečas A, Vajner L, Uhlík J, Amler E. Fibrin/hyaluronic acid composite hydrogels as appropriate scaffolds for in vivo artificial cartilage implantation. ASAIO J. 2010;56(6):563–8.

    Article  PubMed  CAS  Google Scholar 

  77. Kwon H, Paschos NK, Hu JC, Athanasiou K. Articular cartilage tissue engineering: the role of signaling molecules. Cell Mol Life Sci. 2016;73(6):1173–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khozoee B, Mafi P, Mafi R. Khan WS. Mechanical stimulation protocols of human derived cells in articular cartilage tissue engineering – a systematic review. Curr Stem Cell Res Ther. 2017;12(3):260–70.

    Google Scholar 

  79. Fantini S. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). NeuroImage. 2014;85(Pt 1):202–21.

    Article  CAS  PubMed  Google Scholar 

  80. Khan OF, Sefton MV. Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol. 2011;29(8):379–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hendry C, Farley A, McLafferty E. Blood vessels, circulation and blood pressure. Nurs Stand. 2012;27(11):35–40.

    Article  Google Scholar 

  82. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.

    CAS  PubMed  Google Scholar 

  83. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel J-B. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95(2):194–204.

    Article  CAS  PubMed  Google Scholar 

  84. Ladich E, Yahagi K, Romero ME, Virmani R. Vascular diseases: aortitis, aortic aneurysms, and vascular calcification. Cardiovasc Pathol. 2016;25(5):432–41.

    Article  PubMed  Google Scholar 

  85. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: global burden of disease study. Lancet. 1997;349(9061):1269–76.

    Article  CAS  PubMed  Google Scholar 

  86. Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B-Rev. 2016;22(1):68–100.

    CAS  Google Scholar 

  87. Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr Opin Chem Biol. 2013;24(5):916–25.

    CAS  Google Scholar 

  88. Gupta B, Kasyanov V. Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts. J Biomed Mater Res. 1997;34(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  89. Eslami MH, Gangadharan SP, Belkin M, Donaldson MC, Whittemore AD, Conte MS. Monocyte adhesion to human vein grafts: a marker for occult intraoperative injury? J Vasc Surg. 2001;34(5):923–8.

    Article  CAS  PubMed  Google Scholar 

  90. Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc. 2006;31(6):627–36.

    Article  CAS  Google Scholar 

  91. Tiwari A, Cheng KS, Salacinski H, Hamilton G, Seifalian AM. Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch. Eur J Vasc Endovasc. 2003;25(4):287–95.

    Article  CAS  Google Scholar 

  92. Greenwald SE, Berry CL. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol. 2000;190(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  93. Haruguchi H, Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs. 2003;6(4):227–35.

    Article  PubMed  Google Scholar 

  94. Ballyk PD, Walsh C, Butany J, Ojha M. Compliance mismatch may promote graft–artery intimal hyperplasia by altering suture-line stresses. J Biomech. 1997;31(3):229–37.

    Article  Google Scholar 

  95. Davies MG, Hagen P-O. Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc. 1995;9(1):7–18.

    Article  Google Scholar 

  96. Fitz Gibbon GM, Leach AJ, Kafka HP, Keon WJ. Coronary bypass graft fate: long-term angiographic study. J Am Coll Cardiol. 1991;17(5):1075–80.

    Article  CAS  Google Scholar 

  97. Van der Wal A, Becker A, Elbers J, Das P. An immunocytochemical analysis of rapidly progressive atherosclerosis in human vein grafts. Eu J Cardio-Thorac. 1991;6(9):469–73.

    Google Scholar 

  98. Cox JL, Chiasson DA, Gotlieb AI. Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Prog Cardiovasc Dis. 1991;34(1):45–68.

    Article  CAS  PubMed  Google Scholar 

  99. Padberg FT, Calligaro KD, Sidawy AN. Complications of arteriovenous hemodialysis access: recognition and management. J Vasc Surg. 2008;48(5):S55–80.

    Article  Google Scholar 

  100. Zetrenne E, McIntosh BC, McRae MH, Gusberg R, Evans G, Narayan D. Prosthetic vascular graft infection: a multi-center review of surgical management. Yale J Biol Med. 2007;80(3):113–21.

    PubMed  Google Scholar 

  101. Chiesa R, Astore D, Frigerio S, Garriboli L, Piccolo G, Castellano R, Scalamogna M, Odero A, Pirrelli S, Biasi G, Mingazzini P, Biglioli P, Polvani G, Guarino A, Agrifoglio G, Tori A, Spina G. Vascular prosthetic graft infection: epidemiology, bacteriology, pathogenesis and treatment. Acta Chir Belg. 2002;102(4):238–47.

    Article  CAS  PubMed  Google Scholar 

  102. Chlupac J, Filova E, Bacakova L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58:S119.

    PubMed  Google Scholar 

  103. Owida AA, Do H, Morsi YS. Numerical analysis of coronary artery bypass grafts: an over view. Comput Methods Prog Biomed. 2012;108(2):689–705.

    Article  Google Scholar 

  104. Scharn D, Daamen W, van Kuppevelt T, van der Vliet J. Biological mechanisms influencing prosthetic bypass graft patency: possible targets for modern graft design. Eur J Vasc Endovasc. 2012;43(1):66–72.

    Article  CAS  Google Scholar 

  105. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.

    Article  CAS  PubMed  Google Scholar 

  106. Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res. 2006;98(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  107. Mitchell SL, Niklason LE. Requirements for growing tissue-engineered vascular grafts. Cardiovasc Pathol. 2003;12(2):59–64.

    Article  CAS  PubMed  Google Scholar 

  108. Kelly DA. Diseases of the liver and biliary system in children. 3rd ed. Chichester: Wiley; 2008.

    Book  Google Scholar 

  109. Tortora G, Derrickson B. Principles of anatomy and physiology. 12th ed. Wiley: New York; 2008.

    Google Scholar 

  110. Ellis H. Anatomy of the liver. Surgery (Oxford). 2011;29(12):589–92.

    Article  Google Scholar 

  111. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  112. Morin O, Goulet F, Normand C. Liver sinusoidal endothelial cells: isolation, purification, characterization and interaction with hepatocytes. Revisiones Sobre Biología Celular Rbc. 1988;15:1–85.

    CAS  PubMed  Google Scholar 

  113. Malarkey DE, Johnson K, Ryan L, Boorman G, Maronpot RR. New insights into functional aspects of liver morphology. Toxicol Pathol. 2005;33(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  114. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Specialized tissues, stem cells, and tissue renewal. Molecular biology of the cell. 5th ed. New York: Garland Science, Taylor & Francis Group; 2008.

    Google Scholar 

  115. Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc Res Techn. 1997;39(39):350–64.

    Article  CAS  Google Scholar 

  116. Geerts A. History, heterogeneity. Developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 2001;21(3):311–35.

    Article  CAS  PubMed  Google Scholar 

  117. Tietz PS, Larusso NF. Cholangiocyte biology. Curr Opin Gastroenterol. 2006;22(3):279–87.

    Article  PubMed  Google Scholar 

  118. Yamada M, Utoh R, Ohashi K, Tatsumi K, Yamato M, Okano T, Seki M. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 2012;33(33):8304–15.

    Article  CAS  PubMed  Google Scholar 

  119. Campbell I. Liver: functional anatomy and blood supply. Anaesthesia Intens Care Med. 2006;7(2):49–51.

    Article  Google Scholar 

  120. Seely RR, Stephens TD, Tate P. Anat Physiol. 7th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  121. Kuntz E, Kuntz H-D. Hepatology: textbook and atlas. 3rd ed. New York: Springer; 2008.

    Google Scholar 

  122. Sherlock S, Dooley J. Diseases of the liver and biliary system. 11th ed. Chichester: Blackwell Science; 2002.

    Google Scholar 

  123. Senoo H, Yoshikawa K, Mezaki Y, Morii M, Fujiwara M. Regulation of vitamin a homeostasis by the stellate cell (Vitamin A-storing cell) system. New York: Nova Science Publishers Inc; 2011.

    Google Scholar 

  124. Kim WR, Stock PG, Smith JM, Heimbach JK, Skeans MA, Edwards EB, Harper AM, Snyder JJ, Israni AK, Kasiske BL. OPTN/SRTR 2011 annual data report: liver. Am J Transplant. 2013;13(Suppl s1):73–102.

    Article  PubMed  Google Scholar 

  125. Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet. 2012;379(9819):943–52.

    Article  PubMed  Google Scholar 

  126. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  127. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28(25):3587–93.

    Article  CAS  PubMed  Google Scholar 

  128. Lee JS, Cho SW. Liver tissue engineering: recent advances in the development of a bio-artificial liver. Biotechnol Bioprocess Eng. 2012;17(3):427–38.

    Article  CAS  Google Scholar 

  129. Lee NK, Oh HJ, Hong CM, et al. Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic- co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnol Bioprocess Eng. 2009;14(2):180–6.

    Article  CAS  Google Scholar 

  130. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Venugopal J, Zhang YZ, Ramakrishna S. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology. 2005;16(16):2138–42.

    Article  CAS  PubMed  Google Scholar 

  132. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16(5):224–30.

    Article  CAS  PubMed  Google Scholar 

  133. Li YS, Harn HJ, Hsieh DK, Wen TC, Subeq YM, Sun LY, Lin SZ, Chiou TW. Cells and materials for liver tissue engineering. Cell Transplant. 2013;22(4):685–700.

    Article  PubMed  Google Scholar 

  134. Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng A. 2008;14(2):227–36.

    Article  CAS  Google Scholar 

  135. Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN. Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci. 2011;108(29):11842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ji R, Zhang N, You N, Li Q, Liu W, Jiang N, Jiang N, Liu J, Zhang H, Wang D, Tao K, Dou K. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials. 2012;33(35):8995–9008.

    Article  CAS  PubMed  Google Scholar 

  137. Yagi H, Fukumitsu K, Fukuda K, Kitago M, Shinoda M, Obara H, Itano O, Kawachi S, Tanabe M, Coudriet GM, Piganelli JD, Gilbert TW, Soto-Gutierrez A, Kitagawa Y. Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach. Cell Transplant. 2013;22(2):231–42.

    Article  PubMed  Google Scholar 

  138. Nakamura S, Ijima H. Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture. J Biosci Bioeng. 2013;116(6):746–53.

    Article  CAS  PubMed  Google Scholar 

  139. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M, Nagaya M, Lagasse E, Stolz D, Strom SC, Fox IJ, Badylak SF. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods. 2011;17(6):677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiang JX, Zheng XL, Gao R, Wu WQ, Zhu XL, Li JH, Lv Y. Liver regeneration using decellularized splenic scaffold: a novel approach in tissue engineering. Hepatobiliary Pancr Dis Int. 2015;14(5):502–8.

    Article  Google Scholar 

  142. Rasband MN. Glial contributions to neural function and disease. Mol Cell Proteomics. 2016;5(2):355–61.

    Article  CAS  Google Scholar 

  143. Moore FB, Baleja JD. Molecular remodeling mechanisms of the neural somatodendritic compartment. Biochim Biophys Acta. 2012;1823(10):1720–30.

    Article  CAS  PubMed  Google Scholar 

  144. Kaplan BB, Kar AN, Gioio AE, Aschrafi A. MicroRNAs in the axon and presynaptic nerve terminal. Front Cell Neurosci. 2013;7:126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Lenzken SC, Achsel T, Carrì MT, Barabino SM. Neuronal RNA-binding proteins in health and disease. Wiley Interdiscip Rev RNA. 2014;5(4):565–76.

    Article  CAS  PubMed  Google Scholar 

  146. Allen NJ, Barres BA. Neuroscience: glia – more than just brain glue. Nature. 2009;457(7230):675–7.

    Article  CAS  PubMed  Google Scholar 

  147. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.

    Article  PubMed  Google Scholar 

  148. Jones SL, Svitkina TM. Axon initial segment cytoskeleton: architecture, development, and role in neuron polarity. Neural Plast. 2016;2016:6808293.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Baas PW, Rao AN, Matamoros AJ, Leo L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken). 2016;73(9):442–60.

    Article  CAS  Google Scholar 

  150. Penazzi L, Bakota L, Brandt R. Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int Rev Cell Mol Biol. 2016;321:89–169.

    Article  PubMed  Google Scholar 

  151. Wenk GL. Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry. 2003;64(Suppl 9):7–10.

    PubMed  Google Scholar 

  152. Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, Missale C, Spano P. Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol. 2016;42(1):77–94.

    Article  CAS  PubMed  Google Scholar 

  153. Torrent R, De Angelis RF, Dell’Era P, Memo M, Raya A, Consiglio A. Using iPS cells toward the understanding of Parkinson’s disease. J Clin Med. 2015;4(4):548–66.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R. Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. Int J Neurosci. 2015;125(10):717–25.

    Article  CAS  PubMed  Google Scholar 

  155. Stojkovska I, Wagner BM, Morrison BE. Parkinson’s disease and enhanced inflammatory response. Exp Biol Med (Maywood). 2015;240(11):1387–95.

    Article  CAS  Google Scholar 

  156. Gonzalo-Gobernado R, Calatrava-Ferreras L, Perucho J, Reimers D, Casarejos MJ, Herranz AS, Jimenez-Escrig A, Diaz-Gil JJ, Bazan E. Liver growth factor as a tissue regenerating factor in neurodegenerative diseases. Recent Pat CNS Drug Discov. 2014;9(3):173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhu W, O’Brien C, O’Brien JR, Zhang LG. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine (London). 2014;9(6):859–75.

    Article  CAS  Google Scholar 

  158. Wong FS, Chan BP, Lo AC. Carriers in cell-based therapies for neurological disorders. Int J Mol Sci. 2014;15(6):10669–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Saracino GA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem Soc Rev. 2013;42(1):225–62.

    Article  CAS  PubMed  Google Scholar 

  160. Kumar S, Chatterjee K. Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices. ACS Appl Mater Interf. 2016;8(40):26431–57.

    Article  CAS  Google Scholar 

  161. Koss KM, Unsworth LD. Neural tissue engineering: bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomater. 2016;44:2–15.

    Article  CAS  PubMed  Google Scholar 

  162. Wang X, He J, Wang Y, Cui FZ. Hyaluronic acid-based scaffold for central neural tissue engineering. Interf Focus. 2012;2(3):278–91.

    Article  Google Scholar 

  163. Moshayedi P, Carmichael ST. Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter. 2013;3(1):pii: e23863.

    Article  Google Scholar 

  164. Stoll H, Kwon IK, Lim JY. Material and mechanical factors: new strategy in cellular neurogenesis. Neural Regen Res. 2014;9(20):1810–3.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Doroski DM, Brink KS, Temenoff JS. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials. 2007;28(2):187–202.

    Article  CAS  PubMed  Google Scholar 

  166. Holm C, Kjaer M, Eliasson P. Achilles tendon rupture–treatment and complications: a systematic review. Scand J Med Sci Sports. 2015;25(1):e1–10.

    Article  CAS  PubMed  Google Scholar 

  167. James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg [Am]. 2008;33(1):102–12.

    Article  Google Scholar 

  168. Lovati AB, Bottagisio M, Moretti M. Decellularized and engineered tendons as biological substitutes: a critical review. Stem Cells Int. 2016;2016:7276150.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Exp Rev Med Devices. 2009;6(1):61–73.

    Article  Google Scholar 

  170. Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv Drug Deliv Rev. 2015;94:126–40.

    Article  CAS  PubMed  Google Scholar 

  171. Hao ZC, Wang SZ, Zhang XJ, Lu J. Stem cell therapy: a promising biological strategy for tendon-bone healing after anterior cruciate ligament reconstruction. Cell Prolif. 2016;49(2):154–62.

    Article  PubMed  Google Scholar 

  172. Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng. 2015;6:2041731415618342.

    PubMed  PubMed Central  Google Scholar 

  173. Youngstrom DW, Barrett JG. Engineering tendon: scaffolds, bioreactors, and models of regeneration. Stem Cells Int. 2016;2016:3919030.

    Article  PubMed  Google Scholar 

  174. Mace J, Wheelton A, Khan WS, Anand S. The role of bioreactors in ligament and tendon tissue engineering. Curr Stem Cell Res Ther. 2016;11(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  175. Hiong Teh TK, Hong Goh JC, Toh SL. Controlled bioactive molecules delivery strategies for tendon and ligament tissue engineering using polymeric nanofibers. Curr Pharm Des. 2015;21(15):1991–2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Huang, Y., Ji, J., Ding, X., Li, X. (2017). The Potential Tissues and Their Properties. In: Li, X. (eds) Tissue Repair . Springer, Singapore. https://doi.org/10.1007/978-981-10-3554-8_6

Download citation

Publish with us

Policies and ethics