Skip to main content

Variational Multi-phase Continuum Theories of Poroelasticity: A Short Retrospective

  • Chapter
  • First Online:
Variational Continuum Multiphase Poroelasticity

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 67))

  • 687 Accesses

Abstract

This chapter aims at offering a comprehensive overview on the family of two-phase continuum poroelasticity theories whose formulations are based on the application of classical variational methods, or on variants of Hamilton’s Least Action Principle. The reader will be walked through several theoretical approaches to poroelasticity, starting from the early use of variational concepts by Biot, then covering the variational frameworks which employ porosity-enriched kinematics, such as those proposed by Cowin and co-workers and by Bedford and Drumheller, to conclude with the most recent variational theories of multiphase poroelasticity. Arguments are provided to show that, as a widespread opinion in the poroelasticity community, even the formulation of a simplest two-phase purely-mechanical poroelastic continuum theory remains, under several respects, a still-open problem of applied continuum mechanics, with the closure problem representing a crucial issue where important divergencies are found among the several proposed frameworks. Concluding remarks are finally drawn, pointing out the existence of delicate open issues even in the subclass of variational two-phase theories of poroelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizicovici, S., Aron, M.: A variational theorem in the linear theory of mixtures of two elastic solids. the quasi-static case. Acta Mechanica 27(1), 275–280 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers, B., Wilmański, K.: Influence of coupling through porosity changes on the propagation of acoustic waves in linear poroelastic materials. Arch. Mech. 58(4–5), 313–325 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-d continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift für Angewandte Mathematik und Mechanik 94(12), 978–1000 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ateshian, G.A., Ricken, T.: Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6), 689–702 (2010)

    Article  Google Scholar 

  5. Baveye, P.C.: Comment on “averaging theory for description of environmental problems: what have we learned?” by William G. Gray, Cass T. Miller, and Bernhard A. Schrefler. Adv. Water Resour. 52, 328–330 (2013)

    Article  Google Scholar 

  6. Bear, J., Corapcioglu, M.Y.: Fundamentals of Transport Phenomena in Porous Media, vol. 82. Springer, Dordrecht (2012)

    Google Scholar 

  7. Bedford, A., Drumheller, D.: A variational theory of immiscible mixtures. Arch. Ration. Mech. Anal. 68(1), 37–51 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bedford, A., Drumheller, D.: A variational theory of porous media. Int. J. Solids Struct. 15(12), 967–980 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berdichevsky, V.: Variational Principles of Continuum Mechanics. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  11. Biot, M.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21(7), 597–620 (1972)

    Article  MATH  Google Scholar 

  12. Biot, M.: Variational lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13(6), 579–597 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  14. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  MathSciNet  Google Scholar 

  15. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Boer, R.: Theoretical poroelasticity – a new approach. Chaos, Solitons Fractals 25(4), 861–878 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)

    Article  MATH  Google Scholar 

  18. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265

  19. Cosserat, E., Cosserat, F.: Théorie des corps déformables (theory of deformable structures) (1909)

    Google Scholar 

  20. Coussy, O., Dormieux, L., Detournay, E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35(34), 4619–4635 (1998)

    Article  MATH  Google Scholar 

  21. Cowin, S., Goodman, M.: A variational principle for granular materials. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 56(7), 281–286 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32(3), 217–238 (1999)

    Article  MathSciNet  Google Scholar 

  23. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  24. De Boer, R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. Rev. 49(4), 201–262 (1996)

    Article  Google Scholar 

  25. dell’Isola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    Article  MATH  Google Scholar 

  26. dell’Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009). doi:10.1016/j.ijsolstr.2009.04.008

    Article  MathSciNet  MATH  Google Scholar 

  27. dell’Isola, F., Placidi, L.: Variational principles are a powerful tool also for formulating field theories. CISM Courses and Lectures, vol. 535. Springer, Heidelberg (2012)

    Google Scholar 

  28. dell’Isola, F., Rosa, L., Wozniak, C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mechanica 127(1–4), 165–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. dell’Isola, F., Sciarra, G., Coussy, O.: A second gradient theory for deformable fluid-saturated porous media, pp. 135–140 (2005)

    Google Scholar 

  30. dell’Isola, F., Sciarra, G., Romesh, B.: A second gradient model for deformable porous matrices filled with an inviscid fluid. Solid Mech. Appl. 125, 221–229 (2005). doi:10.1007/1-4020-3865-8-25

    Google Scholar 

  31. Diebels, S.: A micropolar theory of porous media: constitutive modelling. Transp. Porous Media 34(1–3), 193–208 (1999)

    Article  Google Scholar 

  32. Drumheller, D.S.: The theoretical treatment of a porous solid using a mixture theory. Int. J. Solids Struct. 14(6), 441–456 (1978)

    Article  MATH  Google Scholar 

  33. Duhem, P.: Dissolutions et mélanges. 2ème mémoire, les propriétés physiques des dissolutions (1893)

    Google Scholar 

  34. Eckart, C.: Variation principles of hydrodynamics. Phys. Fluids (1958–1988) 3(3), 421–427 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ehlers, W., Bluhm, J.: Porous Media: Theory, Experiments and Numerical Applications. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  36. Eringen, A.C.: Mechanics of micromorphic continua. In: Kröner, E. (ed.) Mechanics of Generalized Continua. Springer, Heidelberg (1968)

    Google Scholar 

  37. Eringen, A.C., Kafadar, C.B.: Polar field theories (1976)

    Google Scholar 

  38. Fillunger, P.: Erdbaumechanik? Selbstverl. d. Verf. (1936)

    Google Scholar 

  39. Finlayson, B.A.: The method of weighted residuals and variational principles, vol. 73. SIAM (2013)

    Google Scholar 

  40. Gajo, A.: A general approach to isothermal hyperelastic modelling of saturated porous media at finite strains with compressible solid constituents. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (2010)

    Google Scholar 

  41. Gavrilyuk, S., Gouin, H., Perepechko, Y.: Hyperbolic models of homogeneous two-fluid mixtures. Meccanica 33(2), 161–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Giorgio, I., Andreaus, U., Madeo, A.: The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech. Thermodyn. 21–40 (2014). doi:10.1007/s00161-014-0397-y

  43. Goodman, M., Cowin, S.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gouin, H.: Variational theory of mixtures in continuum mechanics. arXiv preprint arXiv:0807.4519 (2008)

  45. Gouin, H., Ruggeri, T.: Hamiltonian principle in binary mixtures of euler fluids with applications to the second sound phenomena. Rendiconti Matematici dell’Accademia dei Lincei 14(9), 69–83 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Gray, W.G., Miller, C.T., Schrefler, B.A.: Averaging theory for description of environmental problems: what have we learned? Adv. Water Resour. 51, 123–138 (2013)

    Article  Google Scholar 

  47. Gray, W.G., Miller, C.T., Schrefler, B.A.: Response to comment on “averaging theory for description of environmental problems: what have we learned”. Adv. Water Resour. 51, 331–333 (2013)

    Article  Google Scholar 

  48. Gu, W., Lai, W., Mow, V.: A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120(2), 169–180 (1998)

    Article  Google Scholar 

  49. Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  50. Herivel, J.: The derivation of the equations of motion of an ideal fluid by Hamilton’s principle. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 344–349. Cambridge Univ Press (1955)

    Google Scholar 

  51. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Huyghe, J.M., Janssen, J.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35(8), 793–802 (1997)

    Article  MATH  Google Scholar 

  53. Kenyon, D.E.: Thermostatics of solid-fluid mixtures. Arch. Ration. Mech. Anal. 62(2), 117–129 (1976)

    MathSciNet  MATH  Google Scholar 

  54. Lai, W., Hou, J., Mow, V.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258 (1991)

    Article  Google Scholar 

  55. Lanczos, C.: The Variational Principles of Mechanics, vol. 4. Courier Corporation, North Chelmsford (1970)

    MATH  Google Scholar 

  56. Landau, L., Lifshitz, E.: Mechanics: Course of Theoretical Physics, vol. 1 (1976)

    Google Scholar 

  57. Leech, C.: Hamilton’s principle applied to fluid mechanics. Q. J. Mech. Appl. Math. 30(1), 107–130 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu, J., Landis, C.M., Gomez, H., Hughes, T.J.: Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput. Methods Appl. Mech. Eng. 297, 476–553 (2015)

    Article  MathSciNet  Google Scholar 

  59. Lopatnikov, S., Cheng, A.: Variational formulation of fluid infiltrated porous material in thermal and mechanical equilibrium. Mech. Mater. 34(11), 685–704 (2002)

    Article  Google Scholar 

  60. Lopatnikov, S., Cheng, A.: Macroscopic lagrangian formulation of poroelasticity with porosity dynamics. J. Mech. Phys. Solids 52(12), 2801–2839 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lopatnikov, S., Gillespie, J.: Poroelasticity-i: governing equations of the mechanics of fluid-saturated porous materials. Transp. Porous Media 84(2), 471–492 (2010)

    Article  MathSciNet  Google Scholar 

  62. Lopatnikov, S., Gillespie, J.: Poroelasticity-ii: on the equilibrium state of the fluid-filled penetrable poroelastic body. Transp. Porous Media 89(3), 475–486 (2011)

    Article  MathSciNet  Google Scholar 

  63. Lopatnikov, S., Gillespie, J.: Poroelasticity-iii: conditions on the interfaces. Transp. Porous Media 93(3), 597–607 (2012)

    Article  MathSciNet  Google Scholar 

  64. Madeo, A., dell’Isola, F., Darve, F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)

    Article  MathSciNet  Google Scholar 

  65. Madeo, A., dell’Isola, F., Darve, F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013). doi:10.1016/j.jmps.2013.06.009

    Article  MathSciNet  Google Scholar 

  66. Madeo, A., Lekszycki, T., dell’Isola, F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus - Mecanique 339(10), 625–640 (2011). doi:10.1016/j.crme.2011.07.004

    Article  Google Scholar 

  67. Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  68. Moiseiwitsch, B.L.: Variational Principles. Courier Corporation, North Chelmsford (2013)

    MATH  Google Scholar 

  69. Morganti, S., Auricchio, F., Benson, D., Gambarin, F., Hartmann, S., Hughes, T., Reali, A.: Patient-specific isogeometric structural analysis of aortic valve closure. Comput. Methods Appl. Mech. Eng. 284, 508–520 (2015)

    Article  MathSciNet  Google Scholar 

  70. Mow, V., Kuei, S., Lai, W., Armstrong, C.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)

    Article  Google Scholar 

  71. Nikolaevskiy, V.: Biot-frenkel poromechanics in russia (review). J. Eng. Mech. 131(9), 888–897 (2005)

    Article  Google Scholar 

  72. Nunziato, J.W., Walsh, E.K.: On ideal multiphase mixtures with chemical reactions and diffusion. Arch. Ration. Mech. Anal. 73(4), 285–311 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  73. Nur, A., Byerlee, J.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76(26), 6414–6419 (1971)

    Article  Google Scholar 

  74. Oden, J.T., Reddy, J.N.: Variational Methods in Theoretical Mechanics. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  75. Passman, S.: Mixtures of granular materials. Int. J. Eng. Sci. 15(2), 117–129 (1977)

    Article  MATH  Google Scholar 

  76. Schrefler, B.: Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. 55(4), 351–388 (2002)

    Article  Google Scholar 

  77. Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007). doi:10.1016/j.ijsolstr.2007.03.003

    Article  MathSciNet  MATH  Google Scholar 

  78. Sciarra, G., dell’Isola, F., Hutter, K.: Dilatancy and compaction around a cylindrical cavern leached-out in a fluid saturated salt rock, pp. 681–687 (2005)

    Google Scholar 

  79. Sciarra, G., dell’Isola, F., Ianiro, N., Madeo, A.: A variational deduction of second gradient poroelasticity i general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  80. Serpieri, R., Della Corte, A., Travascio, F., Rosati, L.: Variational theories of two-phase continuum poroelastic mixtures: a short survey. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, pp. 377–394. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  81. Skempton, A.: The pore-pressure coefficients a and b. Geotechnique 4(4), 143–147 (1954)

    Article  Google Scholar 

  82. Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33(14), 2021–2054 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  83. Terzaghi, K.: The shearing resistance of saturated soils and the angle between the planes of shear. In: International Conference on Soil Mechanics and Foundation Engineering, Cambridge (1936)

    Google Scholar 

  84. Travascio, F., Eltoukhy, M., Cami, S., Asfour, S.: Altered mechano-chemical environment in hip articular cartilage: effect of obesity. Biomech. Model. Mechanobiol. 13(5), 945–959 (2014)

    Article  Google Scholar 

  85. Truesdell, C.: Sulle basi della termodinamica delle miscele. Rend. Lincei 44(8), 381–383 (1968)

    Google Scholar 

  86. Truesdell, C.: Rational Thermodynamics: A Course of Lectures on Selected Topics. McGraw-Hill, New York (1969)

    Google Scholar 

  87. Truesdell, C., Toupin, R.: The Classical Field Theories. Springer, Heidelberg (1960)

    Book  Google Scholar 

  88. Wilmański, K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Media 32(1), 21–47 (1998)

    Article  Google Scholar 

  89. Wilmański, K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26(6), 509–536 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Serpieri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Serpieri, R., Travascio, F. (2017). Variational Multi-phase Continuum Theories of Poroelasticity: A Short Retrospective. In: Variational Continuum Multiphase Poroelasticity. Advanced Structured Materials, vol 67. Springer, Singapore. https://doi.org/10.1007/978-981-10-3452-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3452-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3451-0

  • Online ISBN: 978-981-10-3452-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics