Variational Multi-phase Continuum Theories of Poroelasticity: A Short Retrospective

  • Roberto SerpieriEmail author
  • Francesco Travascio
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 67)


This chapter aims at offering a comprehensive overview on the family of two-phase continuum poroelasticity theories whose formulations are based on the application of classical variational methods, or on variants of Hamilton’s Least Action Principle. The reader will be walked through several theoretical approaches to poroelasticity, starting from the early use of variational concepts by Biot, then covering the variational frameworks which employ porosity-enriched kinematics, such as those proposed by Cowin and co-workers and by Bedford and Drumheller, to conclude with the most recent variational theories of multiphase poroelasticity. Arguments are provided to show that, as a widespread opinion in the poroelasticity community, even the formulation of a simplest two-phase purely-mechanical poroelastic continuum theory remains, under several respects, a still-open problem of applied continuum mechanics, with the closure problem representing a crucial issue where important divergencies are found among the several proposed frameworks. Concluding remarks are finally drawn, pointing out the existence of delicate open issues even in the subclass of variational two-phase theories of poroelasticity.


Solid Volume Fraction Variational Framework Kinematic Descriptor External Body Force Porosity Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aizicovici, S., Aron, M.: A variational theorem in the linear theory of mixtures of two elastic solids. the quasi-static case. Acta Mechanica 27(1), 275–280 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albers, B., Wilmański, K.: Influence of coupling through porosity changes on the propagation of acoustic waves in linear poroelastic materials. Arch. Mech. 58(4–5), 313–325 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-d continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift für Angewandte Mathematik und Mechanik 94(12), 978–1000 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ateshian, G.A., Ricken, T.: Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6), 689–702 (2010)CrossRefGoogle Scholar
  5. 5.
    Baveye, P.C.: Comment on “averaging theory for description of environmental problems: what have we learned?” by William G. Gray, Cass T. Miller, and Bernhard A. Schrefler. Adv. Water Resour. 52, 328–330 (2013)CrossRefGoogle Scholar
  6. 6.
    Bear, J., Corapcioglu, M.Y.: Fundamentals of Transport Phenomena in Porous Media, vol. 82. Springer, Dordrecht (2012)Google Scholar
  7. 7.
    Bedford, A., Drumheller, D.: A variational theory of immiscible mixtures. Arch. Ration. Mech. Anal. 68(1), 37–51 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bedford, A., Drumheller, D.: A variational theory of porous media. Int. J. Solids Struct. 15(12), 967–980 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Berdichevsky, V.: Variational Principles of Continuum Mechanics. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  11. 11.
    Biot, M.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21(7), 597–620 (1972)CrossRefzbMATHGoogle Scholar
  12. 12.
    Biot, M.: Variational lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13(6), 579–597 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)CrossRefzbMATHGoogle Scholar
  14. 14.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    de Boer, R.: Theoretical poroelasticity – a new approach. Chaos, Solitons Fractals 25(4), 861–878 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi: 10.1177/1081286514531265
  19. 19.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables (theory of deformable structures) (1909)Google Scholar
  20. 20.
    Coussy, O., Dormieux, L., Detournay, E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35(34), 4619–4635 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Cowin, S., Goodman, M.: A variational principle for granular materials. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 56(7), 281–286 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cowin, S.C.: Bone poroelasticity. J. Biomech. 32(3), 217–238 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    De Boer, R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. Rev. 49(4), 201–262 (1996)CrossRefGoogle Scholar
  25. 25.
    dell’Isola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    dell’Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009). doi: 10.1016/j.ijsolstr.2009.04.008 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    dell’Isola, F., Placidi, L.: Variational principles are a powerful tool also for formulating field theories. CISM Courses and Lectures, vol. 535. Springer, Heidelberg (2012)Google Scholar
  28. 28.
    dell’Isola, F., Rosa, L., Wozniak, C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mechanica 127(1–4), 165–182 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    dell’Isola, F., Sciarra, G., Coussy, O.: A second gradient theory for deformable fluid-saturated porous media, pp. 135–140 (2005)Google Scholar
  30. 30.
    dell’Isola, F., Sciarra, G., Romesh, B.: A second gradient model for deformable porous matrices filled with an inviscid fluid. Solid Mech. Appl. 125, 221–229 (2005). doi: 10.1007/1-4020-3865-8-25 Google Scholar
  31. 31.
    Diebels, S.: A micropolar theory of porous media: constitutive modelling. Transp. Porous Media 34(1–3), 193–208 (1999)CrossRefGoogle Scholar
  32. 32.
    Drumheller, D.S.: The theoretical treatment of a porous solid using a mixture theory. Int. J. Solids Struct. 14(6), 441–456 (1978)CrossRefzbMATHGoogle Scholar
  33. 33.
    Duhem, P.: Dissolutions et mélanges. 2ème mémoire, les propriétés physiques des dissolutions (1893)Google Scholar
  34. 34.
    Eckart, C.: Variation principles of hydrodynamics. Phys. Fluids (1958–1988) 3(3), 421–427 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ehlers, W., Bluhm, J.: Porous Media: Theory, Experiments and Numerical Applications. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  36. 36.
    Eringen, A.C.: Mechanics of micromorphic continua. In: Kröner, E. (ed.) Mechanics of Generalized Continua. Springer, Heidelberg (1968)Google Scholar
  37. 37.
    Eringen, A.C., Kafadar, C.B.: Polar field theories (1976)Google Scholar
  38. 38.
    Fillunger, P.: Erdbaumechanik? Selbstverl. d. Verf. (1936)Google Scholar
  39. 39.
    Finlayson, B.A.: The method of weighted residuals and variational principles, vol. 73. SIAM (2013)Google Scholar
  40. 40.
    Gajo, A.: A general approach to isothermal hyperelastic modelling of saturated porous media at finite strains with compressible solid constituents. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (2010)Google Scholar
  41. 41.
    Gavrilyuk, S., Gouin, H., Perepechko, Y.: Hyperbolic models of homogeneous two-fluid mixtures. Meccanica 33(2), 161–175 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Giorgio, I., Andreaus, U., Madeo, A.: The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech. Thermodyn. 21–40 (2014). doi: 10.1007/s00161-014-0397-y
  43. 43.
    Goodman, M., Cowin, S.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Gouin, H.: Variational theory of mixtures in continuum mechanics. arXiv preprint arXiv:0807.4519 (2008)
  45. 45.
    Gouin, H., Ruggeri, T.: Hamiltonian principle in binary mixtures of euler fluids with applications to the second sound phenomena. Rendiconti Matematici dell’Accademia dei Lincei 14(9), 69–83 (2003)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Gray, W.G., Miller, C.T., Schrefler, B.A.: Averaging theory for description of environmental problems: what have we learned? Adv. Water Resour. 51, 123–138 (2013)CrossRefGoogle Scholar
  47. 47.
    Gray, W.G., Miller, C.T., Schrefler, B.A.: Response to comment on “averaging theory for description of environmental problems: what have we learned”. Adv. Water Resour. 51, 331–333 (2013)CrossRefGoogle Scholar
  48. 48.
    Gu, W., Lai, W., Mow, V.: A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120(2), 169–180 (1998)CrossRefGoogle Scholar
  49. 49.
    Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)CrossRefGoogle Scholar
  50. 50.
    Herivel, J.: The derivation of the equations of motion of an ideal fluid by Hamilton’s principle. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 344–349. Cambridge Univ Press (1955)Google Scholar
  51. 51.
    Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Huyghe, J.M., Janssen, J.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35(8), 793–802 (1997)CrossRefzbMATHGoogle Scholar
  53. 53.
    Kenyon, D.E.: Thermostatics of solid-fluid mixtures. Arch. Ration. Mech. Anal. 62(2), 117–129 (1976)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Lai, W., Hou, J., Mow, V.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258 (1991)CrossRefGoogle Scholar
  55. 55.
    Lanczos, C.: The Variational Principles of Mechanics, vol. 4. Courier Corporation, North Chelmsford (1970)zbMATHGoogle Scholar
  56. 56.
    Landau, L., Lifshitz, E.: Mechanics: Course of Theoretical Physics, vol. 1 (1976)Google Scholar
  57. 57.
    Leech, C.: Hamilton’s principle applied to fluid mechanics. Q. J. Mech. Appl. Math. 30(1), 107–130 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Liu, J., Landis, C.M., Gomez, H., Hughes, T.J.: Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput. Methods Appl. Mech. Eng. 297, 476–553 (2015)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Lopatnikov, S., Cheng, A.: Variational formulation of fluid infiltrated porous material in thermal and mechanical equilibrium. Mech. Mater. 34(11), 685–704 (2002)CrossRefGoogle Scholar
  60. 60.
    Lopatnikov, S., Cheng, A.: Macroscopic lagrangian formulation of poroelasticity with porosity dynamics. J. Mech. Phys. Solids 52(12), 2801–2839 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Lopatnikov, S., Gillespie, J.: Poroelasticity-i: governing equations of the mechanics of fluid-saturated porous materials. Transp. Porous Media 84(2), 471–492 (2010)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Lopatnikov, S., Gillespie, J.: Poroelasticity-ii: on the equilibrium state of the fluid-filled penetrable poroelastic body. Transp. Porous Media 89(3), 475–486 (2011)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Lopatnikov, S., Gillespie, J.: Poroelasticity-iii: conditions on the interfaces. Transp. Porous Media 93(3), 597–607 (2012)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Madeo, A., dell’Isola, F., Darve, F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Madeo, A., dell’Isola, F., Darve, F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013). doi: 10.1016/j.jmps.2013.06.009 MathSciNetCrossRefGoogle Scholar
  66. 66.
    Madeo, A., Lekszycki, T., dell’Isola, F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus - Mecanique 339(10), 625–640 (2011). doi: 10.1016/j.crme.2011.07.004 CrossRefGoogle Scholar
  67. 67.
    Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Moiseiwitsch, B.L.: Variational Principles. Courier Corporation, North Chelmsford (2013)zbMATHGoogle Scholar
  69. 69.
    Morganti, S., Auricchio, F., Benson, D., Gambarin, F., Hartmann, S., Hughes, T., Reali, A.: Patient-specific isogeometric structural analysis of aortic valve closure. Comput. Methods Appl. Mech. Eng. 284, 508–520 (2015)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Mow, V., Kuei, S., Lai, W., Armstrong, C.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)CrossRefGoogle Scholar
  71. 71.
    Nikolaevskiy, V.: Biot-frenkel poromechanics in russia (review). J. Eng. Mech. 131(9), 888–897 (2005)CrossRefGoogle Scholar
  72. 72.
    Nunziato, J.W., Walsh, E.K.: On ideal multiphase mixtures with chemical reactions and diffusion. Arch. Ration. Mech. Anal. 73(4), 285–311 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Nur, A., Byerlee, J.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76(26), 6414–6419 (1971)CrossRefGoogle Scholar
  74. 74.
    Oden, J.T., Reddy, J.N.: Variational Methods in Theoretical Mechanics. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  75. 75.
    Passman, S.: Mixtures of granular materials. Int. J. Eng. Sci. 15(2), 117–129 (1977)CrossRefzbMATHGoogle Scholar
  76. 76.
    Schrefler, B.: Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. 55(4), 351–388 (2002)CrossRefGoogle Scholar
  77. 77.
    Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007). doi: 10.1016/j.ijsolstr.2007.03.003 MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Sciarra, G., dell’Isola, F., Hutter, K.: Dilatancy and compaction around a cylindrical cavern leached-out in a fluid saturated salt rock, pp. 681–687 (2005)Google Scholar
  79. 79.
    Sciarra, G., dell’Isola, F., Ianiro, N., Madeo, A.: A variational deduction of second gradient poroelasticity i general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)CrossRefGoogle Scholar
  80. 80.
    Serpieri, R., Della Corte, A., Travascio, F., Rosati, L.: Variational theories of two-phase continuum poroelastic mixtures: a short survey. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, pp. 377–394. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  81. 81.
    Skempton, A.: The pore-pressure coefficients a and b. Geotechnique 4(4), 143–147 (1954)CrossRefGoogle Scholar
  82. 82.
    Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33(14), 2021–2054 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Terzaghi, K.: The shearing resistance of saturated soils and the angle between the planes of shear. In: International Conference on Soil Mechanics and Foundation Engineering, Cambridge (1936)Google Scholar
  84. 84.
    Travascio, F., Eltoukhy, M., Cami, S., Asfour, S.: Altered mechano-chemical environment in hip articular cartilage: effect of obesity. Biomech. Model. Mechanobiol. 13(5), 945–959 (2014)CrossRefGoogle Scholar
  85. 85.
    Truesdell, C.: Sulle basi della termodinamica delle miscele. Rend. Lincei 44(8), 381–383 (1968)Google Scholar
  86. 86.
    Truesdell, C.: Rational Thermodynamics: A Course of Lectures on Selected Topics. McGraw-Hill, New York (1969)Google Scholar
  87. 87.
    Truesdell, C., Toupin, R.: The Classical Field Theories. Springer, Heidelberg (1960)CrossRefGoogle Scholar
  88. 88.
    Wilmański, K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Media 32(1), 21–47 (1998)CrossRefGoogle Scholar
  89. 89.
    Wilmański, K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26(6), 509–536 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi del SannioBeneventoItaly
  2. 2.University of MiamiBiomechanics Research LaboratoryCoral GablesUSA

Personalised recommendations