Skip to main content

Photophysical Applications of Photofunctional Rare-Earth Hybrid Materials

  • Chapter
  • First Online:
Photofunctional Rare Earth Hybrid Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 251))

Abstract

This chapter mainly focuses on recent research progress in the photophysical applications of photofunctional rare-earth hybrid materials, which include the luminescent solar energy concentrators (or optical amplifiers), the luminescent devices or barcoding, and the luminescent sensors for cations, anions, molecules or species, and physical properties such as temperature or pH value. Since the research on the luminescent sensors is very active, the emphasis is put on this topic. As the hybrids based on rare-earth functionalized metal–organic frameworks (MOFs) have the characteristics of molecules, their application in the practical fields are most extensively studied and will be discussed in detail. Herein it mainly focuses on the work of our group in the recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun LN, Zhang HJ, Fu LS, Liu FY, Meng QG, Peng CY, Yu JB (2005) A new so-gel material doped with an erbium complex and its optical-amplification application. Adv Funct Mater 15:1041–1048

    Article  Google Scholar 

  2. Sun LN, Zhang HJ, Meng QG, Liu FY, Fu LS, Peng CY, Yu JB, Zheng GL, Wang SB (2005) Near-infrared luminescent hybrid materials doped with lanthanide (ln) complexes (ln = Nd, Yb) and their possible laser application. J Phys Chem B 109:6174–6182

    Article  Google Scholar 

  3. Graffion J, Cattoen X, Chi Man MW, Fernandes VR, Andre PS, Ferreira RAS, Carlos LD (2011) Modulating the photoluminescence of bridged silsesquioxanes incorporating Eu3+-complexed n,n’-diureido-2,20-bipyridine isomers: application for luminescent solar concentrators. Chem Mater 23:4773–4782

    Article  Google Scholar 

  4. Correia SFH, Bermudez VDZ, Ribeiro SJL, Andre PS, Ferreira RAS, Carlos LD (2014) Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. J Mater Chem A 2:5580–5596

    Article  Google Scholar 

  5. Freitas VT, LS F, Cojocariu AM, Cattoën X, Bartlett JR, Le Parc R, Bantignies J, Chi Man MW, André PS, Ferreira RAS, Carlos LD (2015) Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators. ACS Appl Mater Interf 7:8770−8778

    Article  Google Scholar 

  6. Nolasco MM, Vaz PM, Freitas VT, Lima PP, Andre PS, Ferreira RAS, Vaz PD, Ribeiro-Claro P, Carlos LD (2013) Engineering highly efficient Eu(III)-based tri-ureasil hybrids toward luminescent solar concentrators. J Mater Chem A 1:7339–7350

    Article  Google Scholar 

  7. Correia SFH, Lima PP, André PS, Ferreira RAS, Carlos LD (2015) High-efficiency luminescent solar concentrators for flexible wave-guiding photovoltaics. Solar Energy Mater Solar Cells138:51–57

    Google Scholar 

  8. Wang TR, Li P, Li HR (2014) Color-tunable luminescence of organoclay-based hybrid materials showing potential applications in white LED and thermosensors. ACS Appl Mater Interf 6:12915–12921

    Article  Google Scholar 

  9. Wang TR, Yu XY, Li ZQ, Wang J, Li HR (2015) Multi-colored luminescent light-harvesting hybrids based on aminoclay and lanthanide complexes. RSC Adv 5:11570–11576

    Article  Google Scholar 

  10. Lu Y, Yan B (2014) Lanthanide organic-inorganic hybrids based on functionalized metal-organic frameworks (MOFs) for near-UV white LED. Chem Comm 50:15443–15446

    Google Scholar 

  11. Zhou Y, Yan B (2015) Lanthanides post-functionalized nanocrystalline metal-organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry. Nanoscale 7:4063–4069

    Article  Google Scholar 

  12. White KA, Chengelis DA, Gogick KA, Stehman J, Rosi NL, Petoud S (2009) Near-infrared luminescent lanthanide MOF barcodes. J Am Chem Soc 131:18069–18071

    Article  Google Scholar 

  13. Lu Y, Yan B (2014) Luminescent lanthanide barcodes based on postsynthetic modified nanoscale metal-organic frameworks. J Mater Chem C 2:7411–7416

    Article  Google Scholar 

  14. Zhou Y, Yan B (2015) Ratiometric multiplexed barcodes based on luminescent metal-organic framework films. J Mater Chem C 3:8413–8418

    Article  Google Scholar 

  15. Shen X, Yan B (2016) Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange. J Coll Interf Sci 468:220–226

    Article  Google Scholar 

  16. Zhou Y, Chen HH, Yan B (2014) An Eu3+ post-functionalized nanosized metal-organic framework for cation exchange-based Fe3+-sensing in aqueous environment. J Mater Chem A 2:13691–13697

    Article  Google Scholar 

  17. Xu XY, Yan B (2015) Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II). ACS Appl Mater Interf 7:721–729

    Article  Google Scholar 

  18. Shen X, Yan B (2015) Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing. J Coll Interf Sci 451:63–68

    Article  Google Scholar 

  19. Weng H, Yan B (2016) Lanthanide coordination polymers for multi-color luminescence and sensing of Fe3+. Inorg Chem Comm 63:11–15

    Article  Google Scholar 

  20. Sun NN, Yan B (2016) Lanthanide complexes inside-outside double functionalized zeolite a hybrid materials for luminescent sensing. New J Chem 40:6924–6930

    Article  Google Scholar 

  21. Hao JN, Yan B (2015) A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd2+. Chem Comm 51:7737–7740

    Article  Google Scholar 

  22. Xu XY, Yan B (2016) Eu (III) functionalized Zr-based metal-organic framework as excellent fluorescent probe for Cd2+ detection in aqueous environment. Sensors Actuators B-Chem 222:347–353

    Article  Google Scholar 

  23. Liu C, Yan B (2015) Zeolite-type metal organic frameworks immobilized Eu3+ for cation sensing in aqueous environment. J Coll Interf Sci 459:206–211

    Article  Google Scholar 

  24. Xu XY, Yan B (2016) Fabrication and application of ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal-organic framework hybrids with carbon dots and Eu3+. J Mater Chem C 4:1543–1549

    Article  Google Scholar 

  25. Zhou Z, Wang QM, Zeng Z, Yang LT, Ding XP, Lin N, Cheng ZS (2013) Polyurethane-based Eu(III) luminescent foam as a sensor for recognizing Cu2+ in water. Anal Methods 5:6045–6050

    Article  Google Scholar 

  26. Xu QQ, Li ZQ, Li HR (2016) Water-soluble luminescent hybrid composites consisting of oligosilsesquioxanes and lanthanide complexes and their sensing ability for Cu2+. Chem Eur J 22:3037–3043

    Article  Google Scholar 

  27. Tan CL, Wang QM (2012) Luminescent Cu2+ probes based on rare-earth (Eu3+ and Tb3+) emissive transparent cellulose hydrogels. J Fluorescence 22:1581–1586

    Article  Google Scholar 

  28. Zhang LG, Tan CL, Wang QM, Zhang CC (2011) Anion ⁄ cation induced optical switches based on luminescent lanthanide (Tb3+ and Eu3+) hydrogels. Photochem Photobiol 87:1036–1041

    Article  Google Scholar 

  29. Liu C, Yan B (2015) Highly effective chemosensor of luminescent silica@lanthanide complex@MOF heterostructure composite for metal ion sensing. RSC Adv 5:101982–101988

    Article  Google Scholar 

  30. Lian X, Yan B (2016) Novel core-shell structure microspheres based on lanthanide complexes for white light emission and fluorescence sensing. Dalton Trans 45:2666–2673

    Article  Google Scholar 

  31. Liu C, Yan B (2016) A novel photofunctional hybrid material of pyrene functionalized metal-organic framework with conformation change for luminescence sensing of Cu2+. Sensors Actuator B-Chem 235:541–546

    Article  Google Scholar 

  32. Hao JN, Yan B (2014) Highly sensitive and selective fluorescent probe for ag+ based on a Eu3+ post-functionalized metal-organic framework in aqueous media. J Mater Chem A 2:18018–18025

    Article  Google Scholar 

  33. Hao JN, Yan B (2015) Ag+-sensitized lanthanide luminescence in Ln3+ post-functionalized metal-organic framework and ag+ sensing. J Mater Chem A 3:4788–4792

    Article  Google Scholar 

  34. Weng H, Yan B (2016) Multi-color luminescence and sensing of rare earth hybrids by ionic exchange functionalization. J Fluorescence 26:1497–1504

    Article  Google Scholar 

  35. Hao JN, Yan B (2014) Amino-decorated lanthanide (III) – organic extended frameworks for multi-color luminescence and fluorescence sensing. J Mater Chem C 2:6758–6764

    Article  Google Scholar 

  36. Wang QM, Tan CL, Chen HY, Tamiaki H (2010) A new fluoride luminescence quencher based on a nanostructured covalently bonded terbium hybrid material. J Phys Chem C 114:13879–13883

    Article  Google Scholar 

  37. Zhou Z, Zheng YH, Wang QM (2014) Extension of novel lanthanide luminescent mesoporous nanostructures to detect fluoride. Inorg Chem 53:1530−1536

    Google Scholar 

  38. Li YJ, Xie DY, Pang XL, Yu XD, Yu T, Ge XT (2016) Highly selective fluorescent sensing for fluoride based on a covalently bonded europium mesoporous hybrid material. Sensors Actuators B Chem 227:660–667

    Article  Google Scholar 

  39. Zhou Z, Wang QM, Huo SM, Yan YQ (2012) Luminescent terbium(III) complex-based titania sensing material for fluoride and its photocatalytic properties. Photochem Photobiol Sci 11:738–743

    Article  Google Scholar 

  40. Hao JN, Yan B (2016) Ln3+ post-functionalized metal-organic frameworks for color tunable emission and highly-sensitivity sensing of toxic anions and small molecules. New J Chem 40:4556–4661

    Article  Google Scholar 

  41. Weng H, Yan B (2016) A flexible Tb(III) functionalized cadmium metal-organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules. Sensors Actuator B Chem 228:702–708

    Article  Google Scholar 

  42. Shen X, Yan B (2015) Photoactive rare earth complexes for fluorescent tuning and sensing cations (Fe3+) and anions (Cr2O7 2−). RSC Adv 5:6752–6757

    Article  Google Scholar 

  43. Duan TW, Yan B, Weng H (2015) Europium activated yttrium hybrid system for sensing toxic anion of Cr (VI) species. Microp Mesop. Mater 217:196–202

    Google Scholar 

  44. Tan CL, Wang QM, Ma LJ (2010) Fluorescent-based solid sensor for HSO4 in water. Photochem Photobiol 86:1191–1196

    Article  Google Scholar 

  45. Tan CL, Wang QM (2011) Reversible terbium luminescent polyelectrolyte hydrogels for detection of H2PO4 and HSO4 in water. Inorg Chem 50:2953–2956

    Article  Google Scholar 

  46. Zhou Z, Wang QM, Tan CL (2014) Soft matter anion sensing based on lanthanide (Eu3+ and Tb3+) luminescent hydrogels. Soft Mat 12:98–102

    Google Scholar 

  47. Wang QM, Tan CL, Cai WS (2012) A targetable fluorescent sensor for hypochlorite based on a luminescent europium complex loaded carbon nanotube. Analyst 137:1872–1875

    Article  Google Scholar 

  48. Zheng YH, Tang K, Wang QM (2015) Two novel luminescent metallic based organic–inorganic functionalized silica hybrid materials. Synth Met 209:262–266

    Article  Google Scholar 

  49. Zhou Z, Wang QM (2012) Two emissive cellulose hydrogels for detection of nitrite using terbium luminescence. Sensors & Actuators B-Chem 173:833–838

    Article  Google Scholar 

  50. Sun NN, Yan B (2017) Rapid and facile ratiometric detection of CO3 2− based on heterobimetallic metal-organic frameworks (Eu/Pt-MOFs). Dyes Pigments 42:1–7

    Google Scholar 

  51. Yao YL, Wang YG, Li ZQ, Li HR (2015) Reversible on−off luminescence switching in self-healable hydrogels. Langmuir 31:12736–12741

    Google Scholar 

  52. Li P, Zhang YZ, Wang YG, Wang YJ, Li HR (2014) Luminescent europium(III)–β-diketonate complexes hosted in nanozeolite L as turn-on sensors for detecting basic molecules. Chem Comm 50:13680–13682

    Article  Google Scholar 

  53. Zhou Y, Yan B (2016) A responsive MOF nanocomposite for decoding volatile organic compounds. Chem Comm 52:2265–2268

    Article  Google Scholar 

  54. Shen X, Yan B (2015) A novel fluorescence probe for sensing organic amine vapors from Eu3+ β-diketonate functionalized bio-MOF-1 hybrid system. J Mater Chem C 3:7038–7046

    Article  Google Scholar 

  55. Shen X, Yan B (2016) Anionic metal-organic framework hybrids: double functionalization with lanthanides/cationic dyes and fluorescent sensing small molecules. RSC Adv 6:28165–28170

    Article  Google Scholar 

  56. Weng H, Yan B (2016) N-GQDs and Eu3+ co-encapsulated anionic MOF: two-dimensional luminescent platform for decoding benzene homologues. Dalton Trans 45:8795–8801

    Article  Google Scholar 

  57. Lian X, Yan B (2016) A lanthanide metal–organic framework (MOF-76) for adsorbing dyes and fluorescence detecting aromatic pollutants. RSC Adv 6:11570–11576

    Article  Google Scholar 

  58. Xu XY, Yan B (2016) Nanoscale LnMOF-functionalized nonwoven fiber protected by polydimethysiloxane coating layer as highly sensitive ratiometric oxygen sensor. J Mater Chem C 4:8514–8521

    Article  Google Scholar 

  59. Hao JN, Yan B (2015) Recyclable lanthanide-functionalized MOF hybrids to determine hippuric acid in urine as biological indices of toluene exposure. Chem Comm 51:14509–14512

    Article  Google Scholar 

  60. Hao JN, Yan B (2016) Simultaneous determination of indoor ammonia pollution and its biological metabolite in human body by use of a recyclable nanocrystalline lanthanide functionalized MOF. Nanoscale 8:2881–2886

    Article  Google Scholar 

  61. Hao JN, Yan B (2016) A dual-emitting 4d-4f metal-organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution. Nanoscale 8:12047–12053

    Article  Google Scholar 

  62. Xu XY, Yan B (2017) Eu(III)-functionalized ZnO@MOFs heterostructures: integration of pre-concentration and efficient charge transfer as ppb-level sensing platform for volatile aldehyde gases in vehicles. J Mater Chem A 5:2215–2223

    Article  Google Scholar 

  63. Hao JN, Yan B (2017) Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor. Adv Funct Mater 27:1603856

    Article  Google Scholar 

  64. Brites CDS, Lima PP, Silva NJO, Mill A, Amaral VS, Palacio F, Carlos LD (2012) Thermometry at the nanoscale. Nanoscale 4:4799–4829

    Article  Google Scholar 

  65. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, Carlos LD (2011) Lanthanide-based luminescent molecular thermometers. New J Chem 35:1177–1183

    Article  Google Scholar 

  66. Peng HS, Stich MIJ, Yu JB, Sun LN, Fischer LH, Wolfbeis OS (2010) Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv Mater 22:716–719

    Article  Google Scholar 

  67. Tan CL, Wang QM (2011) Photophysical studies of novel lanthanide (Eu3+ and Tb3+) luminescent hydrogels. Inorg Chem Comm 14:515–518

    Google Scholar 

  68. Peng HS, Huang SH, Wolfbeis OS (2010) Ratiometric fluorescent nanoparticles for sensing temperature. J Nanopart Res 12:2729–2733

    Article  Google Scholar 

  69. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, Carlos LD (2011) A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv Mater 22:4499–4504

    Article  Google Scholar 

  70. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, Carlos LD (2013) Thermometry at the nanoscale using lanthanide-containing organic–inorganic hybrid materials. J Lumin 133:230–232

    Article  Google Scholar 

  71. Brites CDS, Lima PP, Carlos LD (2016) Tuning the sensitivity of Ln3+-based luminescent molecular thermometers through ligand design. J Lumin 169:497–502

    Article  Google Scholar 

  72. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, Carlos LD (2013) Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale 5:7572–7580

    Article  Google Scholar 

  73. Li ZQ, Hou ZH, Ha ZH, Li HR (2015) A ratiometric luminescent thermometer co-doped with lanthanide and transition metals. Chem Asi J 4:2720–2724

    Article  Google Scholar 

  74. Rao XT, Song T, Gao JK, Cui YJ, Yang Y, Wu CD, Chen BL, Qian GD (2013) A highly sensitive mixed lanthanide metal−organic framework self-calibrated luminescent thermometer. J Am Chem Soc 135:15559–15564

    Google Scholar 

  75. Meng X, Song SY, Song XZ, Zhu M, Zhao SN, Wu LL, Zhang HJ (2014) A Tb-codoped coordination polymer luminescent thermometer. Inorg Chem Front 1:757–760

    Article  Google Scholar 

  76. Zhou Y, Yan B, Lei F (2014) Postsynthetic lanthanides functionalization of nanosized metal-organic frameworks for highly sensitive ratiometric luminescent nanothermometers. Chem Comm 50:15235–15238

    Article  Google Scholar 

  77. Zhou Y, Yan B (2015) Ratiometric detection of temperature using responsive dual-emissive MOF hybrids. J Mater Chem C 3:9353–9358

    Article  Google Scholar 

  78. Shen X, Yan B (2015) Polymer hybrid thin films based on rare earth ion-functionalized MOF: photoluminescence tuning and sensing as thermometer. Dalton Trans 44:1875–1881

    Article  Google Scholar 

  79. Shen X, Lu Y, Yan B (2015) Lanthanide complex hybrid system for fluorescent sensing as thermometer. Eur J Inorg Chem:916–919

    Google Scholar 

  80. Lin JT, Zheng YH, Wang QM, Zeng Z, Zhang CC (2014) Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature. Anal Chim Acta 839:51–58

    Article  Google Scholar 

  81. Li ZQ, Li P, Xu QQ, Li HR (2015) Europium(III)–β-diketonate complex-containing nanohybrid luminescent pH detector. Chem Comm 51:10644–10647

    Article  Google Scholar 

  82. Lu Y, Yan B (2014) A ratiometric fluorescent pH sensor based on nanoscale metal-organic frameworks (MOFs) modified by europium (III) complex. Chem Comm 50:13323–13326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yan, B. (2017). Photophysical Applications of Photofunctional Rare-Earth Hybrid Materials. In: Photofunctional Rare Earth Hybrid Materials. Springer Series in Materials Science, vol 251. Springer, Singapore. https://doi.org/10.1007/978-981-10-2957-8_8

Download citation

Publish with us

Policies and ethics