Skip to main content

The Significance of Plant-Associated Microbial Rhizosphere for the Degradation of Xenobiotic Compounds

  • Chapter
  • First Online:
Plant Responses to Xenobiotics

Abstract

Currently, remediation of xenobiotic compounds (heavy metals and hydrocarbons, pesticides, persistent organic pollutants (POPs) in the soil and water has become a major problem. Xenobiotic compounds in the soil exert alternations in the functionality of ecologically and agronomically important soil microflora. These chemicals get accumulated in lipid tissues of higher organisms and cause many problems to the human health (like immunosuppression, hormone disruption, reproductive abnormalities and cancer). Remediation of xenobiotic pollutants by the conventional approaches based on physicochemical methods is economically and technically challenging. But bioremediation techniques based on plant roots and their associated microbes are the most promising, efficient, cost-effective and sustainable technology. A variety of chemicals like organic acids, amino acids and phenolic compounds are secreted by such plants as root exudates. These compounds play a significant role in the interaction between plant root and microbes and also are helpful to stimulate the survival rate and the efficiency of microbes against xenobiotic pollutants. In this chapter, we describe how plant root-associated microbes help in the remediation of xenobiotic compounds and the impact of xenobiotic compounds on microbial community as well as their application feasibility on the basis of these attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588

    Article  CAS  PubMed  Google Scholar 

  • Bouseba B, Zertal A, Beguet J, Rouard N, Devers M, Martin C, Martin‐Laurent F (2009) Evidence for 2, 4‐D mineralisation in Mediterranean soils: impact of moisture content and temperature. Pest Manag Sci 65(9):1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, De Lorenzo V, Dowling DN, O’gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61(5):1946–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RG (1975) Factors affecting pesticide loss from soil. In: Paul EA, McLaren AD (eds) Soil biochemistry, vol 4. Marcel Dekker, Inc, New York, pp 103–141

    Google Scholar 

  • Caplan JA (1993) The worldwide bioremediation industry: prospects for profit. Trends Biotechnol 11(8):320–323

    Article  CAS  PubMed  Google Scholar 

  • Cébron A, Louvel B, Faure P, France‐Lanor C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH‐polluted soil but not phenanthrene degradation rates. Environ Microbial 13(3):722–736

    Article  Google Scholar 

  • Chaplain V, Défossez P, Richard G, Tessier D, Roger-Estrade J (2011) Contrasted effects of no-till on bulk density of soil and mechanical resistance. Soil Tillage Res 111(2):105–114

    Google Scholar 

  • Cheng HH (1990) Pesticides in the soil environment: processes, impacts, and modeling. Pesticides in the soil environment: processes, impacts, and modelling. Soil Science Society of America, Inc, Madison

    Google Scholar 

  • Corgié SC, Joner EJ, Leyval C (2003) Rhizospheric degradation of phenanthrene is a function of proximity to roots. Plant Soil 257(1):143–150

    Article  Google Scholar 

  • Corgié SC, Beguiristain T, Leyval C (2004) Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Loliumperenne L. Appl Environ Microbiol 70(6):3552–3557

    Article  PubMed  PubMed Central  Google Scholar 

  • Deer HM, Beard R (2001) Effect of water pH on the chemical stability of pesticides. AG/Pesticides.14:1

    Google Scholar 

  • Dixon B (1996) Bioremediation is here to stay. ASM News 62:527–528

    Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152

    CAS  PubMed  Google Scholar 

  • Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2, 4, 6-trinitrotoluene. Microbiol Mol Biol Rev 65(3):335–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57(2):302–310

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296(2):226–234

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda L, Rao MA (2008) Interactions between xenobiotics and microbial and enzymatic soil activity. Crit Rev Environ Sci Technol 38(4):269–310

    Article  CAS  Google Scholar 

  • Gold RE, Howell HN, Pawson BM, Wright MS, Lutz JL (1996) Persistence and bioavailability of termicides to subterranean termite from five soil types and location in Texas. Sociobiol 28:337–363

    Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130(3):465–476

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189(1):139–144

    Article  CAS  Google Scholar 

  • Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Article  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Männistö MK, Tiirola MA, Puhakka JA (2001) Degradation of 2, 3, 4, 6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12(5):291–301

    Google Scholar 

  • Pal R, Chakrabarti K, Chakraborty A, Chowdhury A (2006) Degradation and effects of pesticides on soil microbiological parameters-a review. Int J Agri Res 1(33):240–258

    CAS  Google Scholar 

  • Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol Fertil Soils 32:17–23

    Article  CAS  Google Scholar 

  • Płociniczak MP, Płaza GA, Seget ZP, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  Google Scholar 

  • Racke KD, Skidmore MW, Hamilton DJ, Unsworth JB, Miyamoto J, Cohen SZ (1997) Pesticide fate in tropical soil. Pure and Appl Chem 69:1349–1371

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Awadhi H, Sorkhoh NA, El-Nemr IM (1998) Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oil Kuwaiti desert. Microbiol Res 153(3):247–251

    Article  CAS  Google Scholar 

  • Rahman KS, Rahman T, Lakshmanaperumalsamy P, Banat IM (2002) Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol 42:284–291

    Article  CAS  PubMed  Google Scholar 

  • Rani S, Sud D (2015) Effect of temperature on adsorption-desorption behaviour of triazophos in Indian soils. Plant Soil Environ 61(1):36–42

    Article  Google Scholar 

  • Rentz JA, Alvarez PJ, Schnoor JL (2005) Benzo [a] pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ Pollut 136(3):477–484

    Article  CAS  PubMed  Google Scholar 

  • Rohrbacher F, St-Arnaud M (2016) Root exudation: the ecological driver of hydrocarbon rhizoremediation. Agronomy 6(1):19

    Article  Google Scholar 

  • Schroll R, Becher HH, Dorfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40(10):3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2006) Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1, 2-, 3, 4-and 9, 10-dioxygenation, and meta-and ortho-cleavages of naphthalene-1, 2-diol after its formation from naphthalene-1, 2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65(11):2388–2394

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Goldie H, Germida JJ (1998) Enzymatic activity in root exudates of Dahurian wild rye (Elymusdauricus) that degrades 2-chlorobenzoic acid. J Agri Food Chem 46(1):5–7

    Article  CAS  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54(6):1619–1625

    Article  Google Scholar 

  • Thakur IS (2006) Xenobiotics: pollutants and their degradation-methane, benzene, pesticides, bioabsorption of metals. Environmental Microbiology. School of Environmental Sciences, Jawaharlal Nehru University. New Delhi-110 067

    Google Scholar 

  • Thom E, Ottow JCG, Benckiser G (1997) Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendment. Environ Pollut 96:409–414

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of Nitro-Substituted Explosives 2,4,6-Trinitrotoluene, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine, and Octahydro-1,3,5,7-Tetranitro-1,3,5-Tetrazocine by a Phytosymbiotic Methylobacterium sp. Associated with Poplar Tissues (Populus deltoides×nigra DN34). Appl Environ Microbiol 70:1508–1517

    Google Scholar 

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13(4):429–466

    Google Scholar 

  • Verma JP, Jaiswal DK, Yadav J, Singh HB (2016) Cleaner production of agriculture due to beneficial interactions between plants and bacteria. Book Review of ‘Beneficial plant-bacterial interactions’, Glick, BR (2015), Springer, 243 ISBN: 978-3-319-13920-3

    Google Scholar 

  • Wardle DA, Parkinson D (1992) Influence of the herbicides, 2,4-D and glyphosate on soil microbial biomass and activity a field experiment. Soil Biol Biochem 24:185–186

    Article  CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64(1):112–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zacharia JT (2011) Identity, physical and chemical properties of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world – trends in pesticides analysis. In Tech, Rijeka, pp 1–18

    Google Scholar 

  • Zelenev VV, Van Bruggen AHC, Semenov AM (2005) Modeling wave like dynamics of oligotrophic and copiotrophic bacteria along wheat roots in response to nutrient input from a growing root tip. Ecol Model 188(2):404–417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Prakash Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jaiswal, D.K., Verma, J.P. (2016). The Significance of Plant-Associated Microbial Rhizosphere for the Degradation of Xenobiotic Compounds. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_13

Download citation

Publish with us

Policies and ethics