Skip to main content

Biorational, Environmentally Safe Methods for the Control of Soil Pathogens and Pests in Israel

  • Chapter
  • First Online:
Agriculturally Important Microorganisms

Abstract

Since 1992, 74 % of the plant protection products have been removed from the European market. While this process resulted in the withdrawal of most of the pesticides applied to the soil, alternative nontoxic solutions to these chemicals are lacking. Clearly there is an acute need for biorational control strategies for the management of soil pathogens and pests. Here we review the use of compost, biofumigation, and bacterial biological control. While these measures were first intended for sustainable and organic agriculture, we believe they will be adopted in the near future by the conventional sector. The pathogen- and pest-suppressive capability of composts is associated with microbial activity of bacterial and fungal populations in the rhizosphere and the interactions between microbials and macrobials in the soil. Biofumigation is a cultural method to treat soilborne pathogens and pests, using green manures, as well as by crop rotation, intercropping, and pure compound amendments as seed meal, dried plant material, or soil mulching. Biofumigation technology demonstrates the potential to reduce environmental pollution through the replacement of toxic synthetic pesticides with biodegradable plant secondary metabolites. While there is considerable literature on the use of biofumigation on soil pathogens and nematodes, much less can be found on the control of soilborne insect pests. Here the emphasis will be on field rather than laboratory experiments. We also present studies on the compatibility of biofumigation with natural enemies.

Being a soil pathogen, Fusarium oxysporum is difficult to control, and Fusarium prevention is limited. Two groups of bacterial biocontrol agents for Fusarium wilt disease and Fusarium crown disease were investigated and developed: endophytic bacteria living within the plant and plant growth-promoting rhizobacteria (PGPRs) that colonize the rhizosphere. Here, we focus on the latter. Finally we conclude by presenting results from Israel using biofumigation for pathogen and pest control and hypovirulent isolates for the control of Fusarium wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfano G, Ivey ML, Cakir C, Bos J, Miller S, Madden L, Kamoun S, Hoitink H (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437

    Article  CAS  PubMed  Google Scholar 

  • Baker KF, Snyder WC (1965) Ecology of soil-borne plant pathogens: prelude to biological control. University California Press, Berkeley

    Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Google Scholar 

  • Bisen K, Keswani C, Patel JS, Sarma BK, Singh HB (2016) Trichoderma spp.: efficient inducers of systemic resistance in plants. In: Chaudhary DK, Verma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 185–195

    Chapter  Google Scholar 

  • Block E, Putman D, Zhao SH (1992) Allium chemistry: GC-MS analysis of thiosulfinates and related compounds from onion, leek, scallion, shallot, chive, and Chinese chive. J Agric Food Chem 40:2431–2438

    Article  CAS  Google Scholar 

  • Bora T, Özaktan H, Göre E, Aslan E (2004) Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Pathol 152:471–475

    Google Scholar 

  • Borek V, Elberson LR, McCaffrey JP, Morra MJ (1995) Toxicity of aliphatic and aromatic isothiocyanates to eggs of the black vine weevil (Coleoptera: Curculionidae). J Econ Entomol 88(5):1192–1196

    Article  CAS  Google Scholar 

  • Borrero C, Trillas MI, Ordovás J, Tello JC, Avilés M (2004) Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology 94:1094–1101

    Article  PubMed  Google Scholar 

  • Borrero C, Ordovás J, Trillas M, Avilés M (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biolog®. Soil Biol Biochem 38:1631–1637

    Article  CAS  Google Scholar 

  • Boulter J, Boland G, Trevors J (2000) Compost: a study of the development process and end-product potential for suppression of turfgrass disease. World J Microb Biot 16:115–134

    Article  CAS  Google Scholar 

  • Boulter JI, Boland GJ, Trevors JT (2002) Assessment of compost for suppression of Fusarium Patch (Microdochium nivale) and Typhula Blight (Typhula ishikariensis) snow molds of turfgrass. Biol Control 25:162–172

    Article  Google Scholar 

  • Britto EPJ, Gago E, Moraes GJ (2012) How promising is Lasioseius floridensis as a control agent of Polyphagotarsonemus latus? Exp Appl Acarol 56:221–231

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron (USA) 61:167–231

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ, McCaffrey JP, Auld DL, Williams L III (1991) Allelochemicals produced during glucosinolate degradation in soil. J Chem Ecol 17:2021–2034

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Hamilton M, Brown D (2004) Using Brassicaceae seed meal as an alternative to highly toxic soil fumigants in strawberry production. In: Proceedings of the first international symposium biofumigation: a possible alternative to Methyl Bromide, 2004, pp 14–15

    Google Scholar 

  • Chen C, Bauske E, Musson G, Rodriguezkabana R, Kloepper J (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Cheuk W, Lo KV, Copeman R, Joliffe P, Fraser BS (2005) Disease suppression on greenhouse tomatoes using plant waste compost. J Environ Sci Heal B 40:449–461

    Article  CAS  Google Scholar 

  • Conijn CGM, Lesna I, Altena K, Lilien KH, Borochov A, Halevy AH (1997) Biological control of the bulb mite Rhizoglyphus robini by the predatory mite Hypoaspis aculeifer on lilies: implementation in practice. Proceedings of the seventh international symposium on flower bulbs, Herzliya, Israel, 10 16 March 1996 II: 619–624

    Google Scholar 

  • Davis J, Huisman O, Westermann D, Hafez S, Everson D, Sorensen L, Schneider A (1996) Effects of green manures on Verticillium wilt of potato. Phytopathology 86:444–453

    Article  Google Scholar 

  • de Boer M, Bom P, Kindt F, Keurentjes JJ, van der Sluis I, Van Loon L, Bakker PA (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632

    Article  PubMed  Google Scholar 

  • de Groot GA, Jagers OP, Akkerhuis G, Dimmers W, Charrier X, Faber J (2016) Biomass and diversity of soil mite functional groups respond to extensification of land management, potentially affecting soil ecosystem services. Frontiers in Environmental Science 4. doi:10.3389/fenvs.2016.00015

  • Diaz A, Okabe K, Eckenrode CJ, Villani MG, Oconnor BM (2000) Biology, ecology, and management of the bulb mites of the genus Rhizoglyphus (Acari: Acaridae). Exp Appl Acarol 24:85–113

    Article  CAS  PubMed  Google Scholar 

  • Dold SE (2010) Impact of mustards (Brassicaceae) grown as cover crops on non-target arthropod communities. MSc dissertation, University of Illinois, Urbana, Illinois

    Google Scholar 

  • Dugravot S, Sanon A, Thibout E, Huignard J (2002) Susceptibility of Callosobruchus maculatus (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Hymenoptera: Pteromalidae) to sulphur-containing compounds: consequences on biological control. Environ Entomol 31:550–557

    Article  CAS  Google Scholar 

  • Dugravot S, Thibout E, Abo‐Ghalia A, Huignard J (2004) How a specialist and a non‐specialist insect cope with dimethyl disulfide produced by Allium porrum. Entomol Exp Appl 113:173–179

    Article  Google Scholar 

  • Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    Article  CAS  Google Scholar 

  • El‐Hassan S, Gowen S (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Pathol 154:148–155

    Google Scholar 

  • El-Masry M, Khalil A, Hassouna M, Ibrahim H (2002) In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J Microb Biot 18:551–558

    Article  CAS  Google Scholar 

  • Erhart E, Burian K, Hartl W, Stich K (1999) Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. J Pathol 147:299–305

    CAS  Google Scholar 

  • EU-Commission (2009) EU action on pesticides: “our food has become greener” (factsheet). Directorate-general for health and consumers (Hrsg.). Brussels

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Freeman S, Katan J (1988) Weakening effect on propagules of Fusarium by sublethal heating. Phytopathology 78:1656–1661

    Article  Google Scholar 

  • Furlan L, Bonetto C, Finotto A, Lazzeri L, Malaguti L, Patalano G, Parker W (2010) The efficacy of biofumigant meals and plants to control wireworm populations. Ind Crop Prod 31:245–254

    Article  CAS  Google Scholar 

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    Article  CAS  Google Scholar 

  • Gerson U, Capua S, Thorens D (1983) Life history and life tables of Rhizoglyphus robini Claparede (Acari: Astigmata: Acaridae). Acarologia 24:439–448

    Google Scholar 

  • Gerson U, Yathom S, Capua S, Thorens D (1985) Rhizoglyphus robini Claparede (Acari: Astigmata: Acaridae) as a soil mite. Acarologia 26:371–380

    Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (acari) for pest control. Blackwell Science, Oxford

    Book  Google Scholar 

  • Golueke CG (1972) Composting: a study of the process and its principles, vol 71. Rodale Press, Emmaus

    Google Scholar 

  • Gupta R, Vakhlu J (2015) Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocus sativus. Eur J Plant Pathol 143:123–131

    Article  Google Scholar 

  • Hartz TK, Johnstone PR, Miyao EM, Davis RM (2005) Mustard cover crops are ineffective in suppressing soilborne disease or improving processing tomato yield. HortSci 40:2016–2019

    Google Scholar 

  • Heidemann K, Hennies A, Schakowske J, Blumenberg L, Ruess L, Scheu S, Maraun M (2014) Free-living nematodes as prey for higher trophic levels of forest soil food webs. Oikos 123:1199–1211

    Article  CAS  Google Scholar 

  • Ho Y-N, Chiang H-M, Chao C-P, Su C-C, Hsu H-F, Guo C-t, Hsieh J-L, Huang C-C (2015) In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant Soil 387:295–306

    Article  CAS  Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Hoitink HA, Fahy PC (1986) Basis for the control of soilborne plant pathogens with composts. Annu Rev Phytopathol 24:93–114

    Article  Google Scholar 

  • Hoitink H, Stone A, Han D (1997) Suppression of plant diseases by composts. Hort Sci 32:184–187

    Google Scholar 

  • Kabouw P, van der Putten WH, van Dam NM, Biere A (2010) Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant Soil 336:509–518

    Article  CAS  Google Scholar 

  • Kannangara T, Utkhede R, Bactawar B (2004) Compost effect on greenhouse cucumbers and suppression of plant pathogen Fusarium oxysporum. Compost Sci Util 12:308–313

    Article  Google Scholar 

  • Kaydan MB, Kozar F, Hodgson C (2015) A review of the phylogeny of Palaearctic mealybugs (Hemiptera: Coccomorpha: Pseudococcidae). Arthropod Syst Phylogeny 73:175–195

    Google Scholar 

  • Keswani C, Mishra S, Sarma BK et al (2014) Unraveling the efficient application of secondary metabolites of various Trichoderma. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Khan S, Mohiddin F (2007) Effect of certain fungal and bacterial phosphate solubilizing microorganisms on the fusariam wilt of tomato. In: First international meeting on Microbial Phosphate Solubilization, Springer, Dordrecht, pp 357–361

    Google Scholar 

  • Kirkegaard J, Sarwar M (1998) Biofumigation potential of brassicas. Plant Soil 201:71–89

    Article  CAS  Google Scholar 

  • Korthals GW, Thoden TC, van den Berg W, Visser JHM (2014) Long-term effects of eight soil health treatments to control plant-parasitic nematodes and Verticillium dahliae in agro-ecosystems. Appl Soil Ecol 76:112–123

    Article  Google Scholar 

  • Kortnizki-Shapira N (1998) Biocontrol of Fusarium crown and root rot in tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici with hypovirulent isolates of Fusarium. MSc dissertation, Tel Aviv University

    Google Scholar 

  • Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Curr Sci 82:1463–1466

    CAS  Google Scholar 

  • Lebiush-Mordechai S, Erlich O, Maymon M, Freeman S, Ben-David T, Ofek T, Palevsky E, Tsror (Lahkin) L (2014) Bulb and root rot in lily (Lilium longiflorum) and onion (Allium cepa) in Israel. J Pathol 162:466–471

    Google Scholar 

  • Leroy BLMM, Bommele L, Reheul D, Moens M, De Neve S (2007) The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: effects on soil fauna and yield. Eur J Soil Biol 43:91–100

    Article  Google Scholar 

  • Lesna I, Sabelis MW, Bolland HR, Conijn CGM (1995) Candidate natural enemies for control of Rhizoglyphus robini Claparede (Acari: Astigmata) in lily bulbs: exploration in the field and preselection in the laboratory. Exp Appl Acarol 19:655–669

    Article  Google Scholar 

  • Lesna I, Sabelis MW, Bolland HR, Conijn CGM (1996) Biological control of the bulb mite, Rhizoglyphus robini, by the predatory mite, Hypoaspis aculeifer, on lilies: predator-prey interactions at various spatial scales under storage conditions. J Appl Ecol 33:369–376

    Article  Google Scholar 

  • Lesna I, Conijn CGM, Sabelis MW, van-Straalen NM (2000) Biological control of the bulb mite, Rhizoglyphus robini, by the predatory mite, Hypoaspis aculeifer, on lilies: predator-prey dynamics in the soil, under greenhouse and field conditions. Biocontrol Sci Technol 10:179–193

    Article  Google Scholar 

  • Lim H-S, Kim Y-S, Kim S-D (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Main M, McCaffrey J, Morra M (2014) Insecticidal activity of Brassica juncea seed meal to the fungus gnat Bradysia impatiens Johannsen (Diptera: Sciaridae). J Appl Entomol 138:701–707

    Article  Google Scholar 

  • Malandraki I, Tjamos SE, Pantelides IS, Paplomatas EJ (2008) Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management. Biol Control 44:180–187

    Article  Google Scholar 

  • Manu M, Honciuc V (2010) Ecological research on the soil mites populations (Acari: Mesostigmata-Gamasina, Oribatida) from forest ecosystems near Bucharest city. Rom J Biol Zool 55:19–30

    Google Scholar 

  • Matthiessen J, Shackleton M (2000) Advantageous attributes of larval whitefringed weevil, Naupactus leucoloma (Coleoptera: Curculionidae) for bioassays soil fumigants, and responses to pure and plant-derived isothiocyanates. Bull Entomol Res 90:349–355

    Article  CAS  PubMed  Google Scholar 

  • Minor MA, Norton RA (2004) Effects of soil amendments on assemblages of soil mites (Acari: Oribatida, Mesostigmata) in short-rotation willow plantings in central New York. Can J For Res 34:1417–1425

    Article  Google Scholar 

  • Muehlchen A, Rand R, Parke J (1990) Evaluation of crucifer green manures for controlling Aphanomyces root rot of peas. Plant Dis 74:651–654

    Article  Google Scholar 

  • Muslim A, Horinouchi H, Hyakumachi M (2003) Control of Fusarium crown and root rot of tomato with hypovirulent binucleate Rhizoctonia in soil and rock wool systems. Plant Dis 87:739–747

    Article  Google Scholar 

  • Nammour D, Auger J, Huignard J (1989) Insecticidal effect of sulfur compounds (disulfides and trisulfides) on Bruchidius atrolineatus (Pic) (Coleoptera, Bruchidae). Insect Sci Appl 10:49–53

    CAS  Google Scholar 

  • Nelson H, Ouchi S, Shiraishi T, Oku H (1992) Induced resistance to Fusarium wilt of tomato and cucumber: symptoms and pathogen proliferation. Ann Phytopathol Soc Jpn 58:659–663

    Article  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Noble RR, Harvey SG, Sams CE (2002) Toxicity of Indian mustard and allyl isothiocyanate to masked chafer beetle larvae. University of Tennessee. 10.1094/PHP-2002-0610-01-RS. Accessed 25 Apr 2016

  • Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994) Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40:1064–1066

    Article  CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444

    Article  CAS  Google Scholar 

  • Ofek T, Gal S, Inbar M, Lebiush-Mordechai S, Tsror L, Palevsky E (2014) The role of onion associated fungi in bulb mite infestation and damage to onion seedlings. Exp Appl Acarol 62:437–448

    Article  PubMed  Google Scholar 

  • Okabe K, Amano H (1990) Attractancy of Alcohols isolated from culture filtrates of Fusarium fungi for the robine bulb mite, Rhizoglyphus robini CLAPAREDE (Acari: Acaridae), in sand. Appl Entomol Zool 25:397–404

    CAS  Google Scholar 

  • Okabe K, Amano H (1991) Penetration and population growth of the robine bulb mite, Rhizoglyphus robini Claparede (Acari: Acaridae), on healthy and Fusarium-infected rakkyo bulbs. Appl Entomol Zool 26:129–136

    Google Scholar 

  • Omar I, O’neill T, Rossall S (2006) Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol 55:92–99

    Article  CAS  Google Scholar 

  • Park I-K, Shin S-C (2005) Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe). J Agric Food Chem 53:4388–4392

    Article  CAS  PubMed  Google Scholar 

  • Park C-S, Paulitz T, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78:190–194

    Article  Google Scholar 

  • Ploeg A (2008) Biofumigation to manage plant-parasitic nematodes. In: Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, pp 239–248

    Google Scholar 

  • Raviv M (2005) Production of high-quality composts for horticultural purposes: a mini-review. HortTechnology 15:52–57

    Google Scholar 

  • Read DS, Sheppard SK, Bruford MW, Glen DM, Symondson WOC (2006) Molecular detection of predation by soil micro-arthropods on nematodes. Mol Ecol 15:1963–1972

    Article  CAS  PubMed  Google Scholar 

  • Reddy PP (2013) Biofumigation. In: Recent advances in crop protection. Springer, New Delhi, pp 37–60

    Chapter  Google Scholar 

  • Ros M, Hernandez M, Garcia C, Bernal A, Pascual J (2005) Biopesticide effect of green compost against Fusarium wilt on melon plants. J Appl Microbiol 98(4):845–854

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Shetty K, Subbarao K, Huisman O, Hubbard J (2000) Mechanism of broccoli-mediated Verticillium wilt reduction in cauliflower. Phytopathology 90:305–310

    Article  CAS  PubMed  Google Scholar 

  • Shinkaji N, Okabe K, Amano H, Kuwahara Y (1988) Attractants isolated from culture filtrates of Fusarium oxysporum Schl. f. sp. allii for the robine bulb mite, Rhizoglyphus robini Claparede (Acarina: Acaridae). Jpn J Appl Ent Zool 32:55–59

    Article  CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sivan A, Ucko O, Chet I (1987) Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis 71:587–592

    Article  Google Scholar 

  • Smissman EE, Beck SD, Boots MR (1961) Growth inhibition of insects and a fungus by indole-3-acetonitrile. Science 133:462

    Article  CAS  PubMed  Google Scholar 

  • Smolinska U, Horbowicz M (1999) Fungicidal activity of volatiles from selected cruciferous plants against resting propagules of soil‐borne fungal pathogens. J Pathol 147:119–124

    CAS  Google Scholar 

  • Smolinska U, Morra M, Knudsen G, Brown P (1997) Toxicity of glucosinolate degradation products from Brassica napus seed meal toward Aphanomyces euteiches f. sp. pisi. Phytopathology 87:77–82

    Article  CAS  PubMed  Google Scholar 

  • Somasekhard N, Prasad JS (2012) Plant-nematode interactions: consequences of climate change. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer Science & Business Media, Dordrecht, pp 547–563

    Chapter  Google Scholar 

  • Steyaert J, Ridgway H, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. N Z J Crop Hortic Sci 31:281–291

    Article  Google Scholar 

  • Stoffella PJ, Kahn BA (2001) Compost utilization in horticultural cropping systems. CRC Press, Boca Raton

    Book  Google Scholar 

  • Tan D, Fu L, Han B, Sun X, Zheng P, Zhang J (2015) Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of banana Fusarium wilt. PLoS One 10:e0131974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoden T, Korthals G, Termorshuizen A (2011) Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management? Nematology 13:133–153

    Article  Google Scholar 

  • Tsao R, Peterson CJ, Coats JR (2002) Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. BMC Ecol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsror (Lahkim) L, Lebiush S, Meshulam M, Erlich O, Hazanovsky M, Aharon M, Matan E, Tregerman M, Gamliel A (2007) Biofumigation for the control of soilborne diseases. Acta Hortic 747:389–394

    Article  Google Scholar 

  • Verma J, Jaiswal D, Sagar R (2014) Pesticide relevance and their microbial degradation: a state of art. Rev Environ Sci Biotechnol 13:429–466

    Article  Google Scholar 

  • Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates–a review. Food Sci Technol-LEB 42:1561–1572

    Article  CAS  Google Scholar 

  • Whipps J (1997) Developments in the biological control of soil-borne plant. Adv Bot Res 26:1

    Article  Google Scholar 

  • Williams L, Morra MJ, Brown PD, McCaffrey JP (1993) Toxicity of allyl isothiocyanate-amended soil to Limonius californicus (Mann.)(Coleoptera: Elateridae) wireworms. J Chem Ecol 19:1033–1046

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Konno K, Sabelis M, Takabayashi J, Sassa T, Oikawa H (2010) Chemical defence and toxins of plants. In: Mander L, Lui HW (eds) Comprehensive natural products II: chemistry and biology, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Yogev A, Raviv M, Hadar Y, Cohen R, Katan J (2006) Plant waste-based composts suppressive to diseases caused by pathogenic Fusarium oxysporum. Eur J Plant Pathol 116:267–278

    Article  Google Scholar 

  • Yogev A, Raviv M, Hadar Y, Cohen R, Wolf S, Gil L, Katan J (2010) Induced resistance as a putative component of compost suppressiveness. Biol Control 54:46–51

    Article  Google Scholar 

  • Zacky FA, Ting ASY (2015) Biocontrol of Fusarium oxysporum f. sp. cubense tropical race 4 by formulated cells and cell-free extracts of Streptomyces griseus in sterile soil environment. Biocontrol Sci Technol 25:685–696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Palevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shaltiel-Harpaz, L., Masaphy, S., Tsror (Lahkim), L., Palevsky, E. (2016). Biorational, Environmentally Safe Methods for the Control of Soil Pathogens and Pests in Israel. In: Singh, H., Sarma, B., Keswani, C. (eds) Agriculturally Important Microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-10-2576-1_16

Download citation

Publish with us

Policies and ethics