Skip to main content

Role of Proteases in Photo-aging of the Skin

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

Aging is an inevitable process in living organisms that results from molecular damage over time. The skin being the most exposed part of the body, time and environmental aggressor leave their indelible mark on the skin. So, skin aging consists of two clinically and biologically independent processes – the intrinsic chronological aging and the aging through extrinsic factors. While intrinsic aging process proceeds at a genetically determined pace due to buildup of damaging products from cellular metabolism, exposure to solar radiations produces biological damages to the cells, known as photo-aging. It adds up to the effects of chronological aging, and it is the most prominent and important among the extrinsic factors. The normal architecture of the skin is disrupted due to degradation of skin components like collagens, fibers, etc. Photo-aged skin presents fine and coarse wrinkles with blotchy pigmentation, increased fragility, and rough texture. It results from complex biological phenomena that lead to activation of several proteases; the most crucial among them are the matrix metalloproteases (MMPs). UV irradiation generates reactive oxygen species and activates a number of transcription factors like AP1, NF-κB, p53, and growth factor like TGFβ. These, in turn, stimulate the MMPs and other proteases. UV radiation also inhibits the expression of natural inhibitors of MMP (TIMP), thereby enhancing the activity of the MMPs. Understanding of the molecular basis of photo-aging is important for its prevention and effective recovery. Antioxidants and other compounds that inhibit the molecular pathways that result in expression of the proteases have proved to be useful in prevention/reversal of skin aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farage MA, Miller KW, Elsner P et al (2013) Characteristics of the aging skin. Adv Wound Care 2:5–10

    Article  Google Scholar 

  2. Farage MA, Miller KW, Elsner P et al (2008) Functional and physiological characteristics of the aging skin. Aging Clin Exp Res 20:195–200

    Article  PubMed  Google Scholar 

  3. L N, Altieri A, Imberti GL et al (2005) Sun exposure, phenotypic characteristics, and cutaneous malignant melanoma. An analysis according to different clinic - pathological variants and anatomic locations (Italy). Cancer Causes Control 16(8):893–899

    Article  Google Scholar 

  4. Herrmann MWG, Ma W, Kuh L et al (2000) Photoaging of the skin from phenotype to mechanisms. Exptal. Geront 35:307–316

    Article  Google Scholar 

  5. Ichihashi M (2009) Photoaging of the skin. Anti-Aging Medi 6(6):46–59

    Article  Google Scholar 

  6. Kulka M (2013) Mechanisms and treatment of photoaging and photodamage. In: Using old solutions to new problems – natural drug discovery in the 21st century pp 255–276.

    Google Scholar 

  7. Amano S (2009) Possible involvement of basement membrane damage in skin Photoaging. J Invest Dermatol 14:2–7

    Article  CAS  Google Scholar 

  8. Seo JE, Kim S, Shin MH (2010) Ultraviolet irradiation induces thrombospondin-1 which attenuates type-I pro-collagen down regulation in human dermal fibroblasts. J Derm Sci 59:16–24

    Article  CAS  Google Scholar 

  9. Ohnishi Y, Tajima S, Akiyama M et al (2000) Expression of elastin-related proteins and matrix metalloproteinases in actinic elastosis of sun-damaged skin. Arch Dermatol Res 292:27–31

    Article  CAS  PubMed  Google Scholar 

  10. Uitto J (1979) Biochemistry of the elastic fibres in normal connective tissues and its alterations in disease. J Invest Dermatol 72:1–10

    Article  CAS  PubMed  Google Scholar 

  11. Davidson EA (1965) Polysaccharide structure and metabolism. In: Montagna W (ed) Ageing: biology of skin 6:255–270

    Google Scholar 

  12. Sjerobabski-Masnec I, Šitum M (2010) Skin Aging. Acta Clin Croat 49:515–519

    PubMed  Google Scholar 

  13. Scharffetter–Kochanek K, Brenneisen P, Wenk J et al (2000) Photoaging of the skin from phenotype to mechanisms. Exptal Geront 35:307–316

    Google Scholar 

  14. Yano K, Kajuya K, Ishiwata M et al (2004) Ultraviolet B-induced skin angiogenesis is associated with a switch in the balance of vascular endothelial growth factor and thrombospondin-1 expression. J Invest Dermatol 122:201–208

    Article  CAS  PubMed  Google Scholar 

  15. Sakura M, Chiba Y, Kamiya E et al (2014) Differences in the histopathology and cytokine expression pattern between chronological aging and Photoaging of hairless mice skin. Mod Res Inflamm 3:82–89

    Article  Google Scholar 

  16. Fisher GJ, Kang S, Varani J et al (2002) Mechanisms of Photoaging and chronological skin aging. Arch Dermatol 138(11):1462–1470

    Article  CAS  PubMed  Google Scholar 

  17. Trautinger F, Mazzucco K, Knobler RM et al (1994) UVA- and UVB-induced changes in hairless mouse skin collagen. Arch Dermatol Res 286:490–494

    Article  CAS  PubMed  Google Scholar 

  18. Fisher GJ, Datta S, Wang Z et al (2000) C-Jun – dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J Clin Invest 106(5):663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Talwar HS, Griffiths CEM, Fisher G et al (1995) Reduced type I and type III procollagens in Photodamaged adult human skin. J Invest Dermatol 105:285–290

    Article  CAS  PubMed  Google Scholar 

  20. Seite S, Tison-Regnier S, Chistiaens F et al (1998) Effect of repeated low doses of solar simulated UVR in human: comparison with severe photodamaged skin. Protection of skin from ultraviolet radiation Eds: Rougier A, Schaefer H:59–71

    Google Scholar 

  21. Quan T, Qin Z, Xia W et al (2009) Matrix-degrading metalloproteinases in Photoaging. J Invest Dermatol 14:20–24

    Article  CAS  Google Scholar 

  22. Zaid MA, Afaq F, Syed DN et al (2007) Inhibition of UVB-mediated oxidative stress and markers of Photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx. Photochem Photobiol 83:882–888

    Article  PubMed  Google Scholar 

  23. Yokose U, Hachiya A, Sriwiriyanont P et al (2012) The endogenous protease inhibitor TIMP-1 mediates protection and recovery from cutaneous photodamage. J Invest Dermatol 132(12):2800–2809

    Article  CAS  PubMed  Google Scholar 

  24. Khokha R, Denhardt DT (1989) Matrix metalloproteinases and tissue inhibitor of metalloproteinases: a review of their role in tumorigenesis and tissue invasion. Invasion Metastasis 9(6):391–405

    CAS  PubMed  Google Scholar 

  25. Codriansky KA, Quintanilla-Dieck MJ, Gan S et al (2009) Intracellular degradation of elastin by cathepsin K in skin fibroblasts – a possible role in photoaging. Photochem Photobiol 85:1356–1363

    Article  CAS  PubMed  Google Scholar 

  26. Lai W, Zheng Y, Ye ZZ et al (2010) Changes of cathepsin B in human photoaging skin both in vivo and in vitro. Chin Med J 123:527–531

    CAS  PubMed  Google Scholar 

  27. Cavarra E, Fimiani M, Lungarella G et al (2002) UVA light stimulates the production of cathepsin G and elastase-like enzymes by dermal fibroblasts: a possible contribution to the remodeling of elastotic areas in sun-damaged skin. Biol Chem 383:199–206

    Article  CAS  PubMed  Google Scholar 

  28. Son ED, Shim JH, Choi H et al (2012) Cathepsin G inhibitor prevents ultraviolet B-induced photoaging in hairless mice via inhibition of fibronectin fragmentation. Dermatology 224:352–360

    Article  CAS  PubMed  Google Scholar 

  29. Ito K, Tanaka K, Kojima H et al (2008) Mast cell tryptase and photoaging: possible involvement in the degradation of extra cellular matrix and basement membrane proteins, Dermatol. Res 300(Suppl 1):S69–S76

    Google Scholar 

  30. Pillai S, Oresajo C, Hayward J (2005) Ultraviolet radiation and skin aging: roles of reactive oxygen species, in inflammation and protease activation, and strategies for prevention of inflammation induced matrix degradation - a review. Int J Cosmet Sci 27:17–34

    Article  CAS  PubMed  Google Scholar 

  31. Chao SC, Hu DN, Yang PY et al (2013) Ultraviolet-A irradiation upregulated urokinase-type plasminogen activator in pterygium fibroblasts through ERK and JNK pathways. Invest Opthal Vis Sci 54(2):999–1007

    Google Scholar 

  32. Starcher B, Conrad M (1995) A role for neutrophil elastase in the progression of solar elastosis. Connect Tissue Res 31(2):133–140

    Article  CAS  PubMed  Google Scholar 

  33. Rijken F, Rebecca C, Kiekens M et al (2006) Pathophysiology of photoaging of human skin: focus on neutrophils. Photochem Photobiol Sci 5:184–189

    Article  CAS  PubMed  Google Scholar 

  34. Fisher GJ, Choi HC, Bata-Csorgo Z et al (2001) Ultraviolet irradiation increases matrix metalloproteinase-8 protein inhuman skin in vivo. J Invest Dermatol 117:219–226

    Article  CAS  PubMed  Google Scholar 

  35. Chung JH, Seo JY, Lee MK et al (2002) Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J Invest Ther Dermatol 119:507–512

    Article  CAS  Google Scholar 

  36. Brennan M, Bhatti H, Nerusu K et al (2003) Matrix mettalloproteinase-1 is the collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol 78:43–48

    Article  CAS  PubMed  Google Scholar 

  37. Fisher GJ, Datta SC, Talwar HS et al (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    Article  CAS  PubMed  Google Scholar 

  38. Fisher GJ, Wang ZQ, Datta SC et al (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337:1419–1428

    Article  CAS  PubMed  Google Scholar 

  39. Rijken F, Bruijnzeel PLB (2009) The pathogenesis of Photoaging: the role of neutrophils and neutrophil-derived enzymes. J Invest Dermatol 14:67–72

    Article  CAS  Google Scholar 

  40. Wlaschek M, Tantcheva-Poor I, Naderi L et al (2001) Solar UV irradiation and dermal photoaging. J. Photochem Photobiol B Biol 63:41–51

    Article  CAS  Google Scholar 

  41. Hanson KM, Simon JD (1998) Epidermal trans-urocanic acid and the UV-A-induced photoaging of the skin. Proc Natl Acad Sci (USA) 95(18):10576–10578

    Google Scholar 

  42. Valencia A, Kochevar IE (2008) Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. J Invest Dermatol 128:214–222

    Article  CAS  PubMed  Google Scholar 

  43. Quan T (2016) Molecular mechanism of human skin connective tissue aging. In: Quan T (ed) Molecular mechanisms of skin aging and age-related diseases. CRC Press, Boca Raton, pp 1–40

    Google Scholar 

  44. Löffek S, Schilling O, Franzke CW (2011) Biological role of matrix metalloproteinases: a critical balance. Euro Resp J 38:191–208

    Article  Google Scholar 

  45. Birch-Machin MA, Swalwell H (2010) How mitochondria record the effects of UV exposure and oxidative stress using human skin as a model tissue. Mutagenesis 25(2):101–107

    Article  CAS  PubMed  Google Scholar 

  46. Richter T, Zglinicki TV (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exptal Gerontol 42(11):1039–1122

    Article  CAS  Google Scholar 

  47. Pittayapruek P, Meephansan J, Prapapan O et al (2016) Role of matrix metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci 17:868–887

    Article  PubMed Central  Google Scholar 

  48. Philips N, Auler S, Hugo R et al (2011) Beneficial Regulation of Matrix Metalloproteinases for Skin Health Enzyme Research Article ID:427285. 4 pageshttp://dx.doi.org/10.4061/2011/427285

  49. Shin MH, Moon YJ, Seo JE (2008) Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP −1 and MMP −9 expression. Free Rad Biol Medi 44:635–645

    Article  CAS  Google Scholar 

  50. O’Prey J, Crighton D, Martin AG et al (2010) p53-mediated induction of Noxa and p53AIP1 requires NFκB. Cell Cycle 9:947–952

    Article  PubMed  Google Scholar 

  51. Shaulian E, Karin M (2001) AP1 in cell proliferation and survival. Nature 20(19):2390–2400

    CAS  Google Scholar 

  52. Afnan Q, Adil MD, Nissar-Ul A et al (2012) Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts. Phytomedicine 19:658–664

    Article  CAS  PubMed  Google Scholar 

  53. Pandel R, Poljšak B, Godic A et al (2013) Skin Photoaging and the role of antioxidants in its prevention. ISRN Dermatology Article ID 930164. 11 pages http://dx.doi.org/10.1155/2013/930164

  54. Kim HH, Kim DH, MH O et al (2015) Inhibition of MMP1 and type I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet – irradiated human fibroblast cells. Arch Pharma Res 38:11–17

    Article  CAS  Google Scholar 

  55. Tanaka K (2005) Prevention of UVB mediated skin photoaging in a NFκB inhibitor. Parthnolide J Pharmacol Exptal Therap 315:624–630

    Article  CAS  Google Scholar 

  56. Jian J, Pelle E, Yang Q et al (2011) Iron sensitizes keratinocytes and fibroblasts to UVA-mediate matrix metalloproteinase-1 through TNF-α and ERK activation. Exp Dermatol 20:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quan T, He T, Kang S (2004) Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol 165(3):741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Griffiths CEM, Russman AN, Majmudar G et al (1993) Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). New Engl J Med 329:530–535

    Article  CAS  PubMed  Google Scholar 

  60. Wertz K, Seifert N, Hunziker PB et al (2004) Beta-carotene inhibits UVA-induced matrix metalloprotease 1 and 10 expression in keratinocytes by a singlet oxygen-dependent mechanism. Free Rad Biol Med 37(5):654–670

  61. Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory anti-oxidant and DNA repair mechanisms. Arch Dermatol Res 302 (2):71–83

    Google Scholar 

  62. Bae JY, Cho JS, Choi YJ (2008) Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: involvement of mitogen-activated protein kinase. Food Chem Toxicol 46:1298–1307

    Article  CAS  PubMed  Google Scholar 

  63. Bae JY, Lim SS, Kim SJ et al (2009) Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts. Mol Nutr Food Res 53:726–738

    Article  CAS  PubMed  Google Scholar 

  64. Yang B, Ji C, Chen X et al (2011) Protective effect of Astragaloside IV against matrix metalloproteinase-1 expression in ultraviolet-irradiated human dermal fibroblasts. Arch Pharm Res 34(9):1553–1560

    Article  CAS  PubMed  Google Scholar 

  65. Amaro-Ortiz A, Yan B, D’Orazio JA (2014) Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 19 (5): 6202 – 6219

  66. Casetti F, Jung W, Wölfle U et al (2009) Topical application of solubilized Reseda luteola extract reduces ultraviolet B-induced inflammation in vivo. J Photochem Photobiol B: Biology 96:260–265

    Article  CAS  PubMed  Google Scholar 

  67. Urikura I, Sugawara T, Hirata T (2011) Protective effect of Fucoxanthin against UVB- induced skin Photoaging in hairless mice. Biosci Biotechnol Biochem 75(4):757–760

    Article  CAS  PubMed  Google Scholar 

  68. Inui M, Ooe M, Fujii K et al (2008) Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo. Biofactors 32(1–4):237–243

    Article  CAS  PubMed  Google Scholar 

  69. Dong-Hee K, Han-Hyuk K, Hyeon-Jeong K et al (2014) CopA3 peptide prevents ultraviolet-induced inhibition of type-I procollagen and induction of matrix metalloproteinase-1 in human skin fibroblasts. Molecules 19:6407–6414

    Article  Google Scholar 

  70. Greul AK, Grundmann JU, Heinrich F et al (2002) Photoprotection of UV-irradiated human skin: an antioxidative combination of vitamins E and C, carotenoids, selenium and proanthocyanidins. Skin Pharmacol Appl Ski Physiol 15:307–315

    Article  CAS  Google Scholar 

  71. Weiss JS, Ellis CN,.Headington JT et al (1988) Topical tretinoin in the treatment of aging skin. J Am Acad Dermatol. 19 (1):169–175

    Google Scholar 

  72. Rittie L, Fisher GJ, Voorhees JJ (2006) Retinoid therapy for photoaging, In: Gilchrest B, Krutmann J (eds) Skin aging, vol 13. Springer, Berlin, pp 143–156

    Google Scholar 

  73. Salminen A, Ojala J, Kaarniranta K (2011) Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell Mol Life Sci 68(6):1021–1031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges assistance from the University of Kalyani, Kalyani, and DST-PURSE, Government of India, for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, R. (2017). Role of Proteases in Photo-aging of the Skin. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_20

Download citation

Publish with us

Policies and ethics