Skip to main content

Evaluation of Effect of Neoadjuvant Therapy Using Positron Emission Tomography

  • Chapter
  • First Online:
Innovation of Diagnosis and Treatment for Pancreatic Cancer

Abstract

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States, and the majority of patients presents borderline resectable or locally advanced pancreatic cancers. Therefore, neoadjuvant therapy with induction chemotherapy or concurrent chemoradiotherapy (CRT) could provide a chance converting tumors to resectable status. Recently, there has been a growing evidence showing importance of metabolic imaging in predicting clinical outcome after the introduction of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). However, the significance of changes of PET in patients with locally advanced pancreatic cancer after neoadjuvant therapy hasn’t been well defined. In this chapter, we reviewed the role of PET in patients with pancreatic cancer in terms of differential diagnosis, staging malignant lesions, detection of recurrence, and assessment of tumor response to neoadjuvant therapy. The maximum standardized uptake value (SUVmax) was widely used for these clinical outcomes. The cutoff values of SUVmax for predicting survival were variable (3.4–7.0), and high-SUVmax values was associated with poor survival. The initial metabolic response was shown to be proportional to size change during subsequent follow-up, and median SUVmax significantly decreased after 6 weeks of CRT (pre-CRT median SUVmax = 8, range 0–15.6; post-CRT median SUVmax = 3.6, range 0–7.9; p = 0.009). The baseline SUVmax (3.5) and decline in SUVmax (60%) shown as significant factors in predicting survival after neoadjuvant therapy. Volumetric parameters such as gross tumor volume, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were also studied. Although a wide spectrum in MTV and TLG thresholds still exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Faria SC, Tamm EP, Loyer EM, Szklaruk J, Choi H, Charnsangavej C. Diagnosis and staging of pancreatic tumors. Semin Roentgenol. 2004;39:397–411.

    Article  PubMed  Google Scholar 

  3. Moertel CG, Frytak S, Hahn RG, O’Connell MJ, Reitemeier RJ, Rubin J, Schutt AJ, Weiland LH, Childs DS, Holbrook MA, Lavin PT, Livstone E, Spiro H, Knowlton A, Kalser M, Barkin J, Lessner H, Mann-Kaplan R, Ramming K, Douglas Jr HO, Thomas P, Nave H, Bateman J, Lokich J, Brooks J, Chaffey J, Corson JM, Zamcheck N, Novak JW. Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: the Gastrointestinal Tumor Study Group. Cancer. 1981;48:1705–10.

    Article  CAS  PubMed  Google Scholar 

  4. Nunna P, Sheikhbahaei S, Ahn S, Young B, Subramaniam RM. The role of positron emission tomography/computed tomography in management and prediction of survival in pancreatic cancer. J Comput Assist Tomogr. 2016;40:142–51.

    Article  PubMed  Google Scholar 

  5. Wang XY, Yang F, Jin C, Fu DL. Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. World J Gastroenterol. 2014;20:15580–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tang S, Huang G, Liu J, Liu T, Treven L, Song S, Zhang C, Pan L, Zhang T. Usefulness of 18F-FDG PET, combined FDG-PET/CT and EUS in diagnosing primary pancreatic carcinoma: a meta-analysis. Eur J Radiol. 2011;78:142–50.

    Article  PubMed  Google Scholar 

  7. Wu LM, Hu JN, Hua J, Liu MJ, Chen J, Xu JR. Diagnostic value of diffusion-weighted magnetic resonance imaging compared with fluorodeoxyglucose positron emission tomography/computed tomography for pancreatic malignancy: a meta-analysis using a hierarchical regression model. J Gastroenterol Hepatol. 2012;27:1027–35.

    Article  PubMed  Google Scholar 

  8. Pakzad F, Groves AM, Ell PJ. The role of positron emission tomography in the management of pancreatic cancer. Semin Nucl Med. 2006;36:248–56.

    Article  PubMed  Google Scholar 

  9. Asagi A, Ohta K, Nasu J, Tanada M, Nadano S, Nishimura R, Teramoto N, Yamamoto K, Inoue T, Iguchi H. Utility of contrast-enhanced FDG-PET/CT in the clinical management of pancreatic cancer: impact on diagnosis, staging, evaluation of treatment response, and detection of recurrence. Pancreas. 2013;42:11–9.

    Article  PubMed  Google Scholar 

  10. Sun Y, Duan Q, Wang S, Zeng Y, Wu R. Diagnosis of pancreatic cancer using (1)(8)F-FDG PET/CT and CA19-9 with SUVmax association to clinical characteristics. J BUON. 2015;20:452–9.

    PubMed  Google Scholar 

  11. Sperti C, Pasquali C, Decet G, Chierichetti F, Liessi G, Pedrazzoli S. F-18-fluorodeoxyglucose positron emission tomography in differentiating malignant from benign pancreatic cysts: a prospective study. J Gastrointest Surg. 2005;9:22–8. Discussion 28–9

    Article  PubMed  Google Scholar 

  12. Sperti C, Bissoli S, Pasquali C, Frison L, Liessi G, Chierichetti F, Pedrazzoli S. 18-fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas. Ann Surg. 2007;246:932–7. Discussion 937–9

    Article  PubMed  Google Scholar 

  13. Yoshioka M, Uchinami H, Watanabe G, Sato T, Shibata S, Kume M, Ishiyama K, Takahashi S, Hashimoto M, Yamamoto Y. F-18 fluorodeoxyglucose positron emission tomography for differential diagnosis of pancreatic tumors. Springerplus. 2015;4:154.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Staley CA, Lee JE, Cleary KR, Abbruzzese JL, Fenoglio CJ, Rich TA, Evans DB. Preoperative chemoradiation, pancreaticoduodenectomy, and intraoperative radiation therapy for adenocarcinoma of the pancreatic head. Am J Surg. 1996;171:118–24. Discussion 124–5

    Article  CAS  PubMed  Google Scholar 

  15. Kitajima K, Murakami K, Yamasaki E, Kaji Y, Shimoda M, Kubota K, Suganuma N, Sugimura K. Performance of integrated FDG-PET/contrast-enhanced CT in the diagnosis of recurrent pancreatic cancer: comparison with integrated FDG-PET/non-contrast-enhanced CT and enhanced CT. Mol Imaging Biol. 2010;12:452–9.

    Article  PubMed  Google Scholar 

  16. Sperti C, Pasquali C, Bissoli S, Chierichetti F, Liessi G, Pedrazzoli S. Tumor relapse after pancreatic cancer resection is detected earlier by 18-FDG PET than by CT. J Gastrointest Surg. 2010;14:131–40.

    Article  PubMed  Google Scholar 

  17. Ruf J, Lopez Hanninen E, Oettle H, Plotkin M, Pelzer U, Stroszczynski C, Felix R, Amthauer H. Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology. 2005;5:266–72.

    Article  PubMed  Google Scholar 

  18. Hamidian Jahromi A, Sangster G, Zibari G, Martin B, Chu Q, Takalkar A, Shi R, Shokouh-Amiri H. Accuracy of multi-detector computed tomography, fluorodeoxyglucose positron emission tomography-CT, and CA 19-9 levels in detecting recurrent pancreatic adenocarcinoma. JOP. 2013;14:466–8.

    PubMed  Google Scholar 

  19. Li XX, Liu NB, Zhu L, Yuan XK, Yang CW, Ren P, Gong LL, Zhao LJ, Xu WG, Wang P. Consequences of additional use of contrast-enhanced (18)F-FDG PET/CT in target volume delineation and dose distribution for pancreatic cancer. Br J Radiol. 2015;88:20140590.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Willett CG, Czito BG, Bendell JC, Ryan DP. Locally advanced pancreatic cancer. J Clin Oncol. 2005;23:4538–44.

    Article  PubMed  Google Scholar 

  21. Evans DB, Rich TA, Byrd DR, Cleary KR, Connelly JH, Levin B, Charnsangavej C, Fenoglio CJ, Ames FC. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. Arch Surg. 1992;127:1335–9.

    Article  CAS  PubMed  Google Scholar 

  22. Chang JS, Choi SH, Lee Y, Kim KH, Park JY, Song SY, Cho A, Yun M, Lee JD, Seong J. Clinical usefulness of (1)(8)F-fluorodeoxyglucose-positron emission tomography in patients with locally advanced pancreatic cancer planned to undergo concurrent chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2014;90:126–33.

    Article  PubMed  Google Scholar 

  23. Delbeke D, Rose DM, Chapman WC, Pinson CW, Wright JK, Beauchamp RD, Shyr Y, Leach SD. Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med. 1999;40:1784–91.

    CAS  PubMed  Google Scholar 

  24. Burge ME, O'Rourke N, Cavallucci D, Bryant R, Francesconi A, Houston K, Wyld D, Eastgate M, Finch R, Hopkins G, Thomas P, Macfarlane D. A prospective study of the impact of fluorodeoxyglucose positron emission tomography with concurrent non-contrast CT scanning on the management of operable pancreatic and peri-ampullary cancers. HPB (Oxford). 2015;17:624–31.

    Article  Google Scholar 

  25. Kim R, Prithviraj G, Kothari N, Springett G, Malafa M, Hodul P, Kim J, Yue B, Morse B, Mahipal A. PET/CT fusion scan prevents futile laparotomy in early stage pancreatic cancer. Clin Nucl Med. 2015;40:e501–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Topkan E, Parlak C, Yapar AF. FDG-PET/CT-based restaging may alter initial management decisions and clinical outcomes in patients with locally advanced pancreatic carcinoma planned to undergo chemoradiotherapy. Cancer Imaging. 2013;13:423–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bang S, Chung HW, Park SW, Chung JB, Yun M, Lee JD, Song SY. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 2006;40:923–9.

    Article  PubMed  Google Scholar 

  28. Parlak C, Topkan E, Onal C, Reyhan M, Selek U. Prognostic value of gross tumor volume delineated by FDG-PET-CT based radiotherapy treatment planning in patients with locally advanced pancreatic cancer treated with chemoradiotherapy. Radiat Oncol. 2012;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tiitola M, Kivisaari L, Tervahartiala P, Palomaki M, Kivisaari RP, Mankinen P, Vehmas T. Estimation or quantification of tumour volume? CT study on irregular phantoms. Acta Radiol. 2001;42:101–5.

    CAS  PubMed  Google Scholar 

  30. Bjerregaard JK, Mortensen MB, Jensen HA, Nielsen M, Pfeiffer P. Prognostic factors for survival and resection in patients with initial nonresectable locally advanced pancreatic cancer treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:909–15.

    Article  PubMed  Google Scholar 

  31. Schellenberg D, Quon A, Minn AY, Graves EE, Kunz P, Ford JM, Fisher GA, Goodman KA, Koong AC, Chang DT. 18Fluorodeoxyglucose PET is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77:1420–5.

    Article  PubMed  Google Scholar 

  32. Lee JW, Kang CM, Choi HJ, Lee WJ, Song SY, Lee JH, Lee JD. Prognostic value of metabolic tumor volume and Total lesion glycolysis on preoperative (1)(8)F-FDG PET/CT in patients with pancreatic cancer. J Nucl Med. 2014;55:898–904.

    Article  PubMed  Google Scholar 

  33. Choi HJ, Lee JW, Kang B, Song SY, Lee JD, Lee JH. Prognostic significance of volume-based FDG PET/CT parameters in patients with locally advanced pancreatic cancer treated with chemoradiation therapy. Yonsei Med J. 2014;55:1498–506.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dholakia AS, Chaudhry M, Leal JP, Chang DT, Raman SP, Hacker-Prietz A, Su Z, Pai J, Oteiza KE, Griffith ME, Wahl RL, Tryggestad E, Pawlik T, Laheru DA, Wolfgang CL, Koong AC, Herman JM. Baseline metabolic tumor volume and total lesion glycolysis are associated with survival outcomes in patients with locally advanced pancreatic cancer receiving stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;89:539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee SM, Kim TS, Lee JW, Kim SK, Park SJ, Han SS. Improved prognostic value of standardized uptake value corrected for blood glucose level in pancreatic cancer using F-18 FDG PET. Clin Nucl Med. 2011;36:331–6.

    Article  PubMed  Google Scholar 

  36. Jung W, Jang JY, Kang MJ, Chang YR, Shin YC, Chang J, Kim SW. The clinical usefulness of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) in follow-up of curatively resected pancreatic cancer patients. HPB (Oxford). 2016;18:57–64.

    Article  Google Scholar 

  37. Topkan E, Parlak C, Kotek A, Yapar AF, Pehlivan B. Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy. BMC Gastroenterol. 2011;11:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi M, Heilbrun LK, Venkatramanamoorthy R, Lawhorn-Crews JM, Zalupski MM, Shields AF. Using 18F-fluorodeoxyglucose positron emission tomography to monitor clinical outcomes in patients treated with neoadjuvant chemo-radiotherapy for locally advanced pancreatic cancer. Am J Clin Oncol. 2010;33:257–61.

    PubMed  Google Scholar 

  39. Ahn SJ, Park MS, Lee JD, Kang WJ. Correlation between 18F-fluorodeoxyglucose positron emission tomography and pathologic differentiation in pancreatic cancer. Ann Nucl Med. 2014;28:430–5.

    Article  PubMed  Google Scholar 

  40. Hwang JP, Lim I, Chang KJ, Kim BI, Choi CW, Lim SM. Prognostic value of SUVmax measured by fluorine-18 fluorodeoxyglucose positron emission tomography with computed tomography in patients with pancreatic cancer. Nucl Med Mol Imaging. 2012;46:207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kittaka H, Takahashi H, Ohigashi H, Gotoh K, Yamada T, Tomita Y, Hasegawa Y, Yano M, Ishikawa O. Role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in predicting the pathologic response to preoperative chemoradiation therapy in patients with resectable T3 pancreatic cancer. World J Surg. 2013;37:169–78.

    Article  PubMed  Google Scholar 

  42. Yoshioka M, Sato T, Furuya T, Shibata S, Andoh H, Asanuma Y, Hatazawa J, Shimosegawa E, Koyama K, Yamamoto Y. Role of positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose in evaluating the effects of arterial infusion chemotherapy and radiotherapy on pancreatic cancer. J Gastroenterol. 2004;39:50–5.

    Article  PubMed  Google Scholar 

  43. Wilson JM, Mukherjee S, Chu KY, Brunner TB, Partridge M, Hawkins M. Challenges in using (1)(8)F-fluorodeoxyglucose-PET-CT to define a biological radiotherapy boost volume in locally advanced pancreatic cancer. Radiat Oncol. 2014;9:146.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Moon SY, Joo KR, So YR, Lim JU, Cha JM, Shin HP, Yang YJ. Predictive value of maximum standardized uptake value (SUVmax) on 18F-FDG PET/CT in patients with locally advanced or metastatic pancreatic cancer. Clin Nucl Med. 2013;38:778–83.

    Article  PubMed  Google Scholar 

  45. Shi S, Ji S, Qin Y, Xu J, Zhang B, Xu W, Liu J, Long J, Liu C, Liu L, Ni Q, Yu X. Metabolic tumor burden is associated with major oncogenomic alterations and serum tumor markers in patients with resected pancreatic cancer. Cancer Lett. 2015;360:227–33.

    Article  CAS  PubMed  Google Scholar 

  46. Chirindel A, Alluri KC, Chaudhry MA, Wahl RL, Pawlik TM, Herman JM, Subramaniam RM. Prognostic value of FDG PET/CT-derived parameters in pancreatic adenocarcinoma at initial PET/CT staging. AJR Am J Roentgenol. 2015;204:1093–9.

    Article  PubMed  Google Scholar 

  47. Wieder HA, Brucher BL, Zimmermann F, Becker K, Lordick F, Beer A, Schwaiger M, Fink U, Siewert JR, Stein HJ, Weber WA. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol. 2004;22:900–8.

    Article  CAS  PubMed  Google Scholar 

  48. Bokemeyer C, Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg A, Claussen CD, Bares R, Kanz L. Early prediction of treatment response to high-dose salvage chemotherapy in patients with relapsed germ cell cancer using [(18)F]FDG PET. Br J Cancer. 2002;86:506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Joye I, Deroose CM, Vandecaveye V, Haustermans K. The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol. 2014;113:158–65.

    Article  PubMed  Google Scholar 

  50. Okamoto K, Koyama I, Miyazawa M, Toshimitsu Y, Aikawa M, Okada K, Imabayashi E, Matsuda H. Preoperative 18[F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts early recurrence after pancreatic cancer resection. Int J Clin Oncol. 2011;16:39–44.

    Article  PubMed  Google Scholar 

  51. Maemura K, Takao S, Shinchi H, Noma H, Mataki Y, Kurahara H, Jinnouchi S, Aikou T. Role of positron emission tomography in decisions on treatment strategies for pancreatic cancer. J Hepato-Biliary-Pancreat Surg. 2006;13:435–41.

    Article  Google Scholar 

  52. Yamamoto T, Sugiura T, Mizuno T, Okamura Y, Aramaki T, Endo M, Uesaka K. Preoperative FDG-PET predicts early recurrence and a poor prognosis after resection of pancreatic adenocarcinoma. Ann Surg Oncol. 2015;22:677–84.

    Article  PubMed  Google Scholar 

  53. Kitasato Y, Yasunaga M, Okuda K, Kinoshita H, Tanaka H, Okabe Y, Kawahara A, Kage M, Kaida H, Ishibashi M. Maximum standardized uptake value on 18F-fluoro-2-deoxy-glucose positron emission tomography/computed tomography and glucose transporter-1 expression correlates with survival in invasive ductal carcinoma of the pancreas. Pancreas. 2014;43:1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsil Seong M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lee, I.J., Seong, J. (2017). Evaluation of Effect of Neoadjuvant Therapy Using Positron Emission Tomography. In: Yamaue, H. (eds) Innovation of Diagnosis and Treatment for Pancreatic Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-2486-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2486-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2485-6

  • Online ISBN: 978-981-10-2486-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics