Regeneration of Blood Vessels

  • Kai Wang
  • Weilong Cui
  • Yongzhen Wei
  • Meifeng Zhu
  • Qiang Zhao
  • Deling KongEmail author


Various factors influence vascular regeneration and their long-term patency and function. These factors include the polymers’ degradation and elasticity, the scaffolds’ structure, and necessary functional modification to the scaffolds. This chapter will introduce the commonly used polymers in vascular grafts, fabrication of polymeric vascular grafts, functional modification of vascular grafts, and in vivo application of vascular grafts.


Vascular grafts Polymers Fabrication Degradation Tissue regeneration 


  1. 1.
    Song L, Sengupta D, Shu C. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip Rev Syst Biol Med. 2014;6:61–76.CrossRefGoogle Scholar
  2. 2.
    You KH, Ingram J, Korossis SA, Ingham E, Homer-Vanniasinkam S. Tissue engineering of vascular conduits. Br J Surg. 2006;93:652–61.CrossRefGoogle Scholar
  3. 3.
    Baguneid MS, Seifalian AM, Salacinski HJ, Murray D, Hamilton G, Walker MG. Tissue engineering of blood vessels. J Cell Mol Med. 2006;11:945–57.Google Scholar
  4. 4.
    Valence SD, Tille JC, Mugnai D, Mrowczynski W, Gurny R, Möller M, et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, et al. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 2014;35:5700–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Hinsbergh VWMV. The endothelium: vascular control of haemostasis. Eur J Obstet Gynecol Reprod Biol. 2001;95:198–201.PubMedCrossRefGoogle Scholar
  7. 7.
    Yao Y, Wang J, Cui Y, Xu R, Wang Z, Zhang J, et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater. 2014;10:2739–49.PubMedCrossRefGoogle Scholar
  8. 8.
    Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg. 2006;31:627–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Tiwari A, Cheng KS, Salacinski H, Hamilton G, Seifalian AM. Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch * ☆☆. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2003;25:287–95.CrossRefGoogle Scholar
  10. 10.
    Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM, Edwards A, et al. The mechanical behavior of vascular grafts: a review. J Biomater Appl. 2001;15:241–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu JS, et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun. 2012;3:177–80.Google Scholar
  12. 12.
    Oltrona L, Eisenberg PR, Abendschein DR, Rubin BG. Efficacy of local inhibition of procoagulant activity associated with small-diameter prosthetic vascular grafts. J Vasc Surg. 1996;24:624–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Lin PH, Chen C, Bush RL, Yao Q, Lumsden AB, Hanson SR. Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model ☆. J Vasc Surg. 2004;39:1322–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Letourneur D, Caleb BL, Castellot JJ. Heparin binding, internalization, and metabolism in vascular smooth muscle cells: I. Upregulation of heparin binding correlates with antiproliferative activity. J Cell Physiol. 1995;165:676–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Z, Lu Y, Qin K, Wu Y, Tian Y, Wang J, et al. Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug. J Control Release. 2015;210:179–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Mendes AC, Zelikin AN. Enzyme prodrug therapy engineered into biomaterials. Adv Funct Mater. 2014;24:5202–10.CrossRefGoogle Scholar
  17. 17.
    Levy RJ, Schoen FJ, Anderson HC, Harasaki H, Koch TH, Brown W, et al. Cardiovascular implant calcification: a survey and update ☆. Biomaterials. 1991;12:707–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Hutcheson JD, Goettsch C, Rogers MA, Aikawa E. Revisiting cardiovascular calcification: a multifaceted disease requiring a multidisciplinary approach. Semin Cell Dev Biol. 2015;46:68–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Byrom MJ, Bannon PG, White GH, Ng MKC. Animal models for the assessment of novel vascular conduits. J Vasc Surg. 2010;52:176–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013;24:916–25.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chlupác J, Filová E, Bacáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58 Suppl 2:119–39.Google Scholar
  22. 22.
    Deutsch M, Meinhart J, Zilla P, Howanietz N, Gorlitzer M, Froeschl A, et al. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J Vasc Surg. 2009;49:352–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Budd JS, Allen KE, Hartley G, Bell PRF. The effect of preformed confluent endothelial cell monolayers on the patency and thrombogenicity of small calibre vascular grafts *. Eur J Vasc Surg. 1991;5:397–405.PubMedCrossRefGoogle Scholar
  24. 24.
    Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, et al. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Sang-Heon K, Jae Hyun K, Sub CM, Eunna C, Youngmee J, Soo Hyun K, et al. Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. J Biomater Sci Polym Ed. 2006;17:1359–74.CrossRefGoogle Scholar
  26. 26.
    Shafiq M, Jung Y, Kim SH. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone) scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration. Eur Cell Mater. 2015;30:282–302.PubMedGoogle Scholar
  27. 27.
    Mun CH, Jung Y, Kim SH, Lee SH, Kim HC, Kwon IK, et al. Three-dimensional electrospun poly(lactide-co-ɛ-caprolactone) for small-diameter vascular grafts. Tissue Eng Part A. 2012;18:1608–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Cho SW, Jeon O, Lim JE, Gwak SJ, Kim SS, Choi CY, et al. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow–derived cells and a hybrid biodegradable polymer scaffold. J Vasc Surg. 2006;44:1329–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Kobayashi H, Terada D, Yokoyama Y, Moon DW, Yasuda Y, Koyama H, et al. Vascular-inducing poly(glycolic acid)-collagen nanocomposite-fiber scaffold. J Biomed Nanotechnol. 2013;9:1318–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Rapoport HS, Fish J, Basu J, Campbell J, Genheimer C, Payne R, et al. Construction of a tubular scaffold that mimics J-shaped stress/strain mechanics using an innovative electrospinning technique. Tissue Eng Part C Methods. 2012;18:567–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu C, Ma X, Xian L, Zhou Y, Fan D. Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Biomed Mater Eng. 2014;24:1999–2005.PubMedGoogle Scholar
  32. 32.
    Sankaran KK, Krishnan UM, Sethuraman S. Axially aligned 3D nanofibrous grafts of PLA-PCL for small diameter cardiovascular applications. J Biomater Sci Polym Ed. 2014;25:1791–812.PubMedCrossRefGoogle Scholar
  33. 33.
    Izhar U, Schwalb H, Borman JB, Hellener G, Hotoveli-Salomon A, Marom G, Stern T, et al. Novel synthetic selectively degradable vascular prostheses: a preliminary implantation study. J Surg Res. 2001;95:152–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Hashi CK, Derugin N, Janairo RRR, Lee R, Schultz D, Lotz J, et al. Antithrombogenic modification of small-diameter microfibrous vascular grafts. Arterioscler Thromb Vasc Biol. 2010;30:1621–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials. 2006;27:4315–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Mcclure MJ, Sell SA, Bowlin GL, Bowlin GL. Electrospun polydioxanone, elastin, and collagen vascular scaffolds: uniaxial cyclic distension. J Eng Fibers Fabr. 2009;4:18–25.Google Scholar
  37. 37.
    Lee K-W, Stolz DB, Wang Y. Substantial expression of mature elastin in arterial constructs. Proc Natl Acad Sci. 2011;108:2705–10.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012;18:1148–53.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Khosravi R, Best CA, Allen RA, Stowell CET, Onwuka E, Zhuang JJ, et al. Long-term functional efficacy of a novel electrospun poly(glycerol sebacate)-based arterial graft in mice. Ann Biomed Eng. 2016;44:2402–16. 1–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93:716–23.PubMedGoogle Scholar
  41. 41.
    Bergmeister H, Grasl C, Walter I, Plasenzotti R, Stoiber M, Schreiber C, et al. Electrospun small‐diameter polyurethane vascular grafts: ingrowth and differentiation of vascular‐specific host cells. Artif Organs. 2012;36:54–61.PubMedCrossRefGoogle Scholar
  42. 42.
    He W, Hu Z, Xu A, Liu R, Yin H, Wang J, et al. The preparation and performance of a new polyurethane vascular prosthesis. Cell Biochem Biophys. 2013;66:855–66.PubMedCrossRefGoogle Scholar
  43. 43.
    Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Yi H. Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomater. 2014;10:4618–28.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bergmeister H, Seyidova N, Schreiber C, Strobl M, Grasl C, Walter I, et al. Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomater. 2015;11:104–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Enayati M, Eilenberg M, Grasl C, Riedl P, Kaun C, Messner B, et al. Biocompatibility assessment of a new biodegradable vascular graft via in vitro co-culture approaches and in vivo model. Ann Biomed Eng. 2016. doi:10.1007/s10439-016-1601-y.Google Scholar
  46. 46.
    Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev. 2001;53:5–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg. 1999;68:2298–304.PubMedCrossRefGoogle Scholar
  48. 48.
    Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.PubMedCrossRefGoogle Scholar
  49. 49.
    Achilli M, Lagueux J, Mantovani D. On the effects of UV-C and pH on the mechanical behavior, molecular conformation and cell viability of collagen-based scaffold for vascular tissue engineering. Macromol Biosci. 2010;10:307–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Schutte SC, Chen Z, Brockbank KG, Nerem RM. Cyclic strain improves strength and function of a collagen-based tissue-engineered vascular media. Tissue Eng Part A. 2010;16:3149–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu HC, Wang TW, Kang PL, Tsuang YH, Sun JS, Lin FH. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Biomaterials. 2007;28:1385–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Leach JB, Wolinsky JB, Stone PJ, Wong JY. Crosslinked α-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater. 2005;1:155–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Koens MJW, Faraj KA, Wismans RG, Vliet JAVD, Krasznai AG, Cuijpers VMJI, et al. Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel. Acta Biomater. 2010;6:4666–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Ryan AJ, O’Brien FJ. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials. 2015;73:296–307.PubMedCrossRefGoogle Scholar
  55. 55.
    Smith MJ, Mcclure MJ, Sell SA, Barnes CP, Walpoth BH, Simpson DG, et al. Suture-reinforced electrospun polydioxanone–elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study. Acta Biomater. 2008;4:58–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Ye Q, Zund G, Benedikt P, Sockenhoevel J, Hoerstrup SP, Sakyama S, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000;17:587–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Syedain ZH, Meier LA, Bjork JW, Ann L, Tranquillo RT. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials. 2010;32:714–22.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bjork JW, Meier LA, Johnson SL, Syedain ZH, Tranquillo RT. Hypoxic culture and insulin yield improvements to fibrin-based engineered tissue. Tissue Eng Part A. 2012;18:785–95.PubMedCrossRefGoogle Scholar
  59. 59.
    Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288:867.Google Scholar
  60. 60.
    Chupa JM, Foster AM, Sumner SR, Madihally SV, Matthew HWT. Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials. 2000;21:2315–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Ling Z, Qiang A, Wang A, Lu G, Kong L, Gong Y, et al. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res A. 2006;77A:277–84.CrossRefGoogle Scholar
  62. 62.
    Zhu C, Fan D, Duan Z, Xue W, Shang L, Chen F, et al. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J Biomed Mater Res A. 2009;89:829–40.PubMedCrossRefGoogle Scholar
  63. 63.
    Du F, Wang H, Zhao W, Li D, Kong D, Yang J, et al. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials. 2011;33:762–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Milella E, Brescia E, Massaro C, Ramires PA, Miglietta MR, Fiori V, et al. Physico-chemical properties and degradability of non-woven hyaluronan benzylic esters as tissue engineering scaffolds. Biomaterials. 2002;23:1053–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhu C, Fan D, Wang Y. Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;34C:393–401.CrossRefGoogle Scholar
  66. 66.
    Joo H, Byun E, Lee M, Hong Y, Lee H, Kim P. Biofunctionalization via flow shear stress resistant adhesive polysaccharide, hyaluronic acid-catechol, for enhanced in vitro endothelialization. J Ind Eng Che. 2016;34:14.CrossRefGoogle Scholar
  67. 67.
    Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393:276–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle in culture. Physiol Rev. 1979;59:1–61.PubMedGoogle Scholar
  69. 69.
    Rothuizen TC, Damanik FF, Lavrijsen T, Visser MJ, Hamming JF, Lalai RA, et al. Development and evaluation of in vivo tissue engineered blood vessels in a porcine model. Biomaterials. 2016;75:82–90.PubMedCrossRefGoogle Scholar
  70. 70.
    Mahara A, Somekawa S, Kobayashi N, Hirano Y, Kimura Y, Fujisato T, et al. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials. 2015;58:54–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Row S, Peng H, Schlaich EM, Koenigsknecht C, Andreadis ST, Swartz DD. Arterial grafts exhibiting unprecedented cellular infiltration and remodeling invivo: the role of cells in the vascular wall. Biomaterials. 2015;50:115–26.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jeremy J, Gadsdon P, Vijayan V, Wyatt M, Newby A, Angelini G. On the biology of saphenous vein grafts fitted with external synthetic sheaths and stents ☆. Biomaterials. 2007;28:895–908.PubMedCrossRefGoogle Scholar
  73. 73.
    Gong W, Lei D, Li S, Huang P, Qi Q, Sun Y, et al. Hybrid small-diameter vascular grafts: anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials. 2016;76:359–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Longchamp A, Alonso F, Dubuis C, Allagnat F, Berard X, Meda P, et al. The use of external mesh reinforcement to reduce intimal hyperplasia and preserve the structure of human saphenous veins. Biomaterials. 2014;35:2588–99.PubMedCrossRefGoogle Scholar
  75. 75.
    Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10:11–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Valence SD, Tille JC, Giliberto JP, Mrowczynski W, Gurny R, Walpoth BH, et al. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 2012;8:3914–20.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhu M, Wang Z, Zhang J, Wang L, Yang X, Chen J, et al. Circumferentially aligned fibers guided functional neoartery regeneration invivo. Biomaterials. 2015;61:85–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Hibino N, Imai Y, Shinoka T, Aoki M, Watanabe M, Kosaka Y, et al. First successful clinical application of tissue engineered blood vessel. Kyobu Geka Jpn J Thorac Surg. 2002;55:368–73.Google Scholar
  79. 79.
    Shin’Oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129:1330–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Hibino N, McGillicuddy E, Matsumura G, Ichichara Y, Naito Y, Breuer C, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139:431–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Allen RA, Wu W, Yao M, Dutta D, Duan X, Bachman TN, et al. Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials. 2014;35:165–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Yang X, Wei J, Lei D, Liu Y, Wu W. Appropriate density of PCL nano-fiber sheath promoted muscular remodeling of PGS/PCL grafts in arterial circulation. Biomaterials. 2016;88:34–47.PubMedCrossRefGoogle Scholar
  83. 83.
    Hu J, Sun X, Ma H, Xie C, Chen YE, Ma PX. Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials. 2010;31:7971–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ma H, Hu J, Ma PX. Polymer scaffolds for small‐diameter vascular tissue engineering. Adv Funct Mater. 2010;20:2833–41.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Soletti L, Yi H, Guan J, Stankus JJ, El-Kurdi MS, Wagner WR, et al. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 2010;6:110–22.PubMedCrossRefGoogle Scholar
  86. 86.
    Wei H, Alejandro N, Lorenzo S, Yi H, Burhan G, Mihaela C, et al. Pericyte-based human tissue engineered vascular grafts. Biomaterials. 2010;31:8235–44.CrossRefGoogle Scholar
  87. 87.
    Sugiura T, Tara S, Nakayama H, Kurobe H, Yi T, Lee YU, et al. Novel bioresorbable vascular graft with sponge-type scaffold as a small-diameter arterial graft. Ann Thorac Surg. 2016;102:720–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Smith DJ, Chakravarthy D, Pulfer S, Simmons ML, Hrabie JA, Citro ML, et al. Nitric oxide-releasing polymers containing the [N (O) NO]-group. J Med Chem. 1996;39:1148–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Fleser PS, Nuthakki VK, Malinzak LE, Callahan RE, Seymour ML, Reynolds MM, et al. Nitric oxide–releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg. 2004;40:803–11.PubMedCrossRefGoogle Scholar
  90. 90.
    Kushwaha M, Anderson JM, Bosworth CA, Andukuri A, Minor WP, Lancaster JR, et al. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials. 2010;31:1502–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Andukuri A, Kushwaha M, Tambralli A, Anderson JM, Dean DR, Berry JL, et al. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants. Acta Biomater. 2011;7:225–33.PubMedCrossRefGoogle Scholar
  92. 92.
    Duan X, Lewis RS. Improved haemocompatibility of cysteine-modified polymers via endogenous nitric oxide. Biomaterials. 2002;23:1197–203.PubMedCrossRefGoogle Scholar
  93. 93.
    Gappa-Fahlenkamp H, Lewis RS. Improved hemocompatibility of poly (ethylene terephthalate) modified with various thiol-containing groups. Biomaterials. 2005;26:3479–85.PubMedCrossRefGoogle Scholar
  94. 94.
    Chen S, An J, Weng L, Li Y, Xu H, Wang Y, et al. Construction and biofunctional evaluation of electrospun vascular graft loaded with selenocystamine for in situ catalytic generation of nitric oxide. Mater Sci Eng C. 2014;45:491–6.CrossRefGoogle Scholar
  95. 95.
    An J, Chen S, Gao J, Zhang X, Wang Y, Li Y, et al. Construction and evaluation of nitric oxide generating vascular graft material loaded with organoselenium catalyst via layer-by-layer self-assembly. Sci China Life Sci. 2015;58:765–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Weng Y, Song Q, Zhou Y, Zhang L, Wang J, Chen J, et al. Immobilization of selenocystamine on TiO 2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials. 2011;32:1253–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhou Y, Weng Y, Zhang L, Jing F, Huang N, Chen J. Cystamine immobilization on TiO2 film surfaces and the influence on inhibition of collagen-induced platelet activation. Appl Surf Sci. 2011;258:1776–83.CrossRefGoogle Scholar
  98. 98.
    Yang Z, Yang Y, Xiong K, Li X, Qi P, Tu Q, et al. Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials. 2015;63:80–92.PubMedCrossRefGoogle Scholar
  99. 99.
    Muylaert DE, van Almen GC, Talacua H, Fledderus JO, Kluin J, Hendrikse SI, et al. Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides. Biomaterials. 2016;76:187–95.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang Z, Wang H, Zheng W, Zhang J, Zhao Q, Wang S, et al. Highly stable surface modifications of poly (3-caprolactone)(PCL) films by molecular self-assembly to promote cells adhesion and proliferation. Chem Commun. 2011;47:8901–3.CrossRefGoogle Scholar
  101. 101.
    Zheng W, Wang Z, Song L, Zhao Q, Zhang J, Li D, et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials. 2012;33:2880–91.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang Y, Chen S, Pan Y, Gao J, Tang D, Kong D, et al. Rapid in situ endothelialization of a small diameter vascular graft with catalytic nitric oxide generation and promoted endothelial cell adhesion. J Mater Chem B. 2015;3:9212–22.CrossRefGoogle Scholar
  103. 103.
    Larsen CC, Kligman F, Tang C, Kottke-Marchant K, Marchant RE. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials. 2007;28:3537–48.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhou F, Jia X, Yang Q, Yang Y, Zhao Y, Fan Y, et al. Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan. Biomater Sci. 2016;4:849–56.PubMedCrossRefGoogle Scholar
  105. 105.
    Ji Q, Zhang S, Zhang J, Wang Z, Wang J, Cui Y, et al. Dual functionalization of poly (ε-caprolactone) film surface through supramolecular assembly with the aim of promoting in situ endothelial progenitor cell attachment on vascular grafts. Biomacromolecules. 2013;14:4099–107.PubMedCrossRefGoogle Scholar
  106. 106.
    Niu B, Huang Y, Zhang S, Wang D, Xu H, Kong D, et al. Expression and characterization of hydrophobin HGFI fused with the cell-specific peptide TPS in Pichia pastoris. Protein Expr Purif. 2012;83:92–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Huang Y, Zhang S, Niu B, Wang D, Wang Z, Feng S, et al. Poly(ɛ-caprolactone) modified with fusion protein containing self-assembled hydrophobin and functional peptide for selective capture of human blood outgrowth endothelial cells. Colloids Surf B Biointerfaces. 2013;101:361–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Brewster LP, Washington C, Brey EM, Gassman A, Subramanian A, Calceterra J, et al. Construction and characterization of a thrombin-resistant designer FGF-based collagen binding domain angiogen. Biomaterials. 2008;29:327–36.PubMedCrossRefGoogle Scholar
  109. 109.
    Yu J, Wang A, Tang Z, Henry J, Lee LP, Zhu Y, et al. The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials. 2012;33:8062–74.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Talacua H, Smits AI, Muylaert DE, van Rijswijk JW, Vink A, Verhaar MC, et al. In situ tissue engineering of functional small-diameter blood vessels by host circulating cells only. Tissue Eng Part A. 2015;21:2583–94.PubMedCrossRefGoogle Scholar
  111. 111.
    Koobatian MT, Row S, Jr RJS, Koenigsknecht C, Andreadis ST, Swartz DD. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials. 2016;76:344–58.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang Z, Sun B, Zhang M, Ou L, Che Y, Zhang J, et al. Functionalization of electrospun poly(-caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts. J Bioact Compat Polym. 2013;28:154–66.CrossRefGoogle Scholar
  113. 113.
    Shin YM, Lee YB, Kim SJ, Kang JK, Park JC, Jang W, et al. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromolecules. 2012;13:2020–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Han F, Jia X, Dai D, Yang X, Zhao J, Zhao Y, et al. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials. 2013;34:7302–13.PubMedCrossRefGoogle Scholar
  115. 115.
    Lu S, Peng Z, Sun X, Gong F, Yang S, Li S, et al. Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl Mater Interfaces. 2013;5:7360–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Dannowski H, Bednarz J, Reszka R, Engelmann K, Pleyer U. Lipid-mediated gene transfer of acidic fibroblast growth factor into human corneal endothelial cells. Exp Eye Res. 2005;80:93–101.PubMedCrossRefGoogle Scholar
  117. 117.
    Akowuah EF, Gray C, Lawrie A, Sheridan PJ, Su CH, et al. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther. 2005;12:1154–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Meng QH, Irvine S, Tagalakis AD, Mcanulty RJ, Mcewan JR, Hart SL. Inhibition of neointimal hyperplasia in a rabbit vein graft model following non-viral transfection with human iNOS cDNA. Gene Ther. 2013;20:979–86.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Jing-Tao Z, Qing C, Yan S, Hong-Bo G, Ping X. Lentiviral vector mediated expression of Bax and hepatocyte growth factor inhibits vein graft thickening in a rabbit vein graft model. Pharmazie. 2014;69:809–13.Google Scholar
  120. 120.
    Zhang J, Qi H, Wang H, Hu P, Ou L, Guo S, et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Artif Organs. 2006;30:898–905.PubMedCrossRefGoogle Scholar
  121. 121.
    Yin A, Zhang K, Mcclure MJ, Huang C, Wu J, Fang J, et al. Electrospinning collagen/chitosan/poly(L -lactic acid- co -ϵ-caprolactone) to form a vascular graft: mechanical and biological characterization †. J Biomed Mater Res A. 2013;101:1292–301.PubMedCrossRefGoogle Scholar
  122. 122.
    Qiu Y, Tarbell JM. Computational simulation of flow in the end-to-end anastomosis of a rigid graft and a compliant artery. ASAIO J. 1996;42:M702–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Song Y, Feijen J, Grijpma DW, Poot AA. Tissue engineering of small-diameter vascular grafts: a literature review. Clin Hemorheol Microcirc. 2011;49:357–74.PubMedGoogle Scholar
  124. 124.
    Isaka M, Nishibe T, Okuda Y, Saito M, Seno T, Yamashita K, et al. Experimental study on stability of a high-porosity expanded polytetrafluoroethylene graft in dogs. Ann Thorac Cardiovasc Surg Off J Assoc Thorac Cardiovasc Surg Asia. 2006;12:37–41.Google Scholar
  125. 125.
    Lu XL, Sun ZJ, Cai W, Gao ZY. Study on the shape memory effects of poly(l -lactide-co-ε-caprolactone) biodegradable polymers. J Mater Sci Mater Med. 2008;19:395–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Sang JL, Jie L, Oh SH, Soker S, Atala A, Yoo JJ. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008;29:2891–8.CrossRefGoogle Scholar
  127. 127.
    Mercado-Pagán ÁE, Stahl AM, Ramseier ML, Behn AW, Yang Y. Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts. Mater Sci Eng C Mater Biol Appl. 2016;64:61–73.PubMedCrossRefGoogle Scholar
  128. 128.
    Takeuchi M, Kuratani T, Miyagawa S, Shirakawa Y, Shimamura K, Kin K, et al. Tissue-engineered stent-graft integrates with aortic wall by recruiting host tissue into graft scaffold. J Thorac Cardiovasc Surg. 2014;148:1719–25.PubMedCrossRefGoogle Scholar
  129. 129.
    Giudiceandrea A, Seifalian AM, Krijgsman B, Hamilton G. Effect of prolonged pulsatile shear stress in vitro on endothelial cell seeded PTFE and compliant polyurethane vascular grafts. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 1998;15:147–54.CrossRefGoogle Scholar
  130. 130.
    Tai NR, Salacinski HJ, Edwards A, Hamilton G, Seifalian AM. Compliance properties of conduits used in vascular reconstruction. Br J Surg. 2000;87:1516–24.PubMedCrossRefGoogle Scholar
  131. 131.
    Uttayarat P, Perets A, Li M, Pimton P, Stachelek SJ, Alferiev I, et al. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater. 2010;6:4229–37.PubMedCrossRefGoogle Scholar
  132. 132.
    Odermatt EK, Funk L, Bargon R, Martin DP, Rizk S, Williams SF. MonoMax suture: a new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate. Int J Polym Sci. 2012;2012:216137.Google Scholar
  133. 133.
    Patel HN, Garcia R, Schindler C, Dean D, Pogwizd SM, Singh R, et al. Fibro-porous poliglecaprone/polycaprolactone conduits: synergistic effect of composition and in vitro degradation on mechanical properties. Polym Int. 2015;64:547–55.PubMedCrossRefGoogle Scholar
  134. 134.
    Wright LD, Andric T, Freeman JW. Utilizing NaCl to increase the porosity of electrospun materials. Mater Sci Eng C. 2011;31:30–6.CrossRefGoogle Scholar
  135. 135.
    Hirai J, Matsuda T. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell Transplant. 1996;5:93–105.PubMedCrossRefGoogle Scholar
  136. 136.
    Offeddu GS, Ashworth JC, Cameron RE, Oyen ML. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds. Acta Biomater. 2016;41:193–203.PubMedCrossRefGoogle Scholar
  137. 137.
    Kumar VA, Caves JM, Haller CA, Dai E, Liu L, Grainger S, et al. Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater. 2013;9:8067–74.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Buijtenhuijs P, Buttafoco L, Poot AA, Daamen WF, Kuppevelt THV, Dijkstra PJ, et al. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Biotechnol Appl Biochem. 2004;39:141–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Yu Z, Zhang Y. The orthotropic viscoelastic behavior of aortic elastin. Biomech Model Mechanobiol. 2010;10:613–25.Google Scholar
  140. 140.
    Mckenna KA, Hinds MT, Sarao RC, Wu PC, Maslen CL, Glanville RW, et al. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater. 2011;8:225–33.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Agrawal V, Kollimada SA, Byju AG, Gundiah N. Regional variations in the nonlinearity and anisotropy of bovine aortic elastin. Biomech Model Mechanobiol. 2013;12:1181–94.PubMedCrossRefGoogle Scholar
  142. 142.
    Arrigoni C, Camozzi D, Imberti B, Mantero S, Remuzzi A. The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs. Biomaterials. 2006;27:623–30.PubMedCrossRefGoogle Scholar
  143. 143.
    Ruiz A, Flanagan CE, Masters KS. Differential support of cell adhesion and growth by copolymers of polyurethane with hyaluronic acid. J Biomed Mater Res A. 2013;101:2870–82.PubMedCrossRefGoogle Scholar
  144. 144.
    Chuang TW, Masters KS. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides. Biomaterials. 2009;30:5341–51.PubMedCrossRefGoogle Scholar
  145. 145.
    Elsayed Y, Lekakou C, Labeed F, Tomlins P. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts. Mater Sci Eng C. 2015;61:473–83.CrossRefGoogle Scholar
  146. 146.
    Ju YM, Jin SC, Atala A, Yoo JJ, Sang JL. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010;31:4313–21.PubMedCrossRefGoogle Scholar
  147. 147.
    Stitzel J, Jie L, Sang JL, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088–94.PubMedCrossRefGoogle Scholar
  148. 148.
    Sarasam A, Madihally SV. Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials. 2005;26:5500–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Chen F, Su Y, Mo X, He C, Wang H, Ikada Y. Biocompatibility, alignment degree and mechanical properties of an electrospun chitosan–P(LLA-CL) fibrous scaffold. J Biomater Sci Polym Ed. 2009;20:2117–28.PubMedCrossRefGoogle Scholar
  150. 150.
    Reed AM, Gilding DK. Biodegradable polymers for use in surgery – poly(ethylene oxide)/poly(ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation. Polymer. 1979;20:1454–8.CrossRefGoogle Scholar
  151. 151.
    Tara S, Kurobe H, Maxfield MW, Rocco KA, Bagi P, Yi T, et al. Comparison of the biological equivalence of two methods for isolating bone marrow mononuclear cells for fabricating tissue-engineered vascular grafts. Tissue Eng C Methods. 2015;21(6):597–604.CrossRefGoogle Scholar
  152. 152.
    Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B. 2011;49:832–64.CrossRefGoogle Scholar
  153. 153.
    Ye X, Lu L, Kolewe ME, Park H, Larson BL, Kim ES, et al. A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials. 2013;34:10007–15.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Kai Wang
    • 1
  • Weilong Cui
    • 1
  • Yongzhen Wei
    • 1
  • Meifeng Zhu
    • 1
  • Qiang Zhao
    • 1
  • Deling Kong
    • 1
    Email author
  1. 1.College of Life SciencesNankai UniversityTianjinChina

Personalised recommendations