Skip to main content

Ceramic Matrix Composites (CMCs) for Aerospace Applications

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Ceramic materials have excellent properties, but are brittle and the strengths are highly variable. Particulate reinforcements give isotropic properties, but only marginal improvement in toughness. Continuous reinforcements improve the ceramic materials both in terms of fracture toughness as well as strength variability. The processing of ceramic matrix composites and improving the required properties with the available reinforcements is an emerging technology that is finding new critical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krenkel W (ed) (2008) Ceramic matrix composites. Wiley-Vch Verlag Gmbh & Co, KGaA, Weinhein, Germany, p 418

    Google Scholar 

  2. Rice RW (1981) Mechanisms of toughening in ceramic matrix composites. In: Proceedings of ceramic engineering science, vol 2, pp 661–701

    Google Scholar 

  3. Kelly A, MacMillan NH (1986) Strong solids. Oxford University Press, Oxford, UK, p 445

    Google Scholar 

  4. Morrel R (1987) Hand book of properties of technical and engineering ceramics: part—1: an introduction for engineers and designers and part—2: data reviews. HMSO, London, UK

    Google Scholar 

  5. Wu R (1988) In: Ishida H (ed) Interfaces in polymer, ceramic and metal matrix composites. Elsevier, New York, USA, p 425

    Google Scholar 

  6. Chawla KK (1991) Ceramic matrix composites. Chapman and Hall, New York, USA

    Google Scholar 

  7. Schneider DJR, Davidson GM, Lampman SR, Woods MS, Zorc TB, Uhl RC (1991) Ceramics and glasses: engineering materials handbook, vol 4. ASM International, Materials Park, OH, USA

    Google Scholar 

  8. Jessen JL, Bender BA, Lewis D (1993) Mechanical properties of layered and laminated ceramic matrix composite systems. Proc Ceram Eng Sci 13:796

    Article  Google Scholar 

  9. Chawla KK (1993) Ceramic matrix composites. Chapman and Hall, New York, USA

    Book  Google Scholar 

  10. Danial IM, Ishai O (1994) Engineering mechanics of composite materials. Oxford University Press, London, UK, pp 129–148

    Google Scholar 

  11. Watchman JB (1996) Mechanical properties of ceramics. Wiley, New York, USA, pp 391–408

    Google Scholar 

  12. Munz D, Fett T (1999) “Ceramics: mechanical properties”, ‘failure behaviour and materials selection’. Springer, Berlin, Germany

    Google Scholar 

  13. Somiya S, Aldinger F, Claussen N, Springs RM, Uchino K, Koumoto K, Kaneno M (2006) Vol II: processing and applications. Elsevier India Pvt. Ltd, New Delhi, India

    Google Scholar 

  14. Wu R (1988) In: Ishida H (ed) Interfaces in polymer ceramic and metal matrix composites. Elsevier, New York, USA

    Google Scholar 

  15. Warren R (1991) Ceramic matrix composites. Springer, New York, USA

    Google Scholar 

  16. Peters ST (1998) Handbook of composites. Springer, New York, USA

    Book  Google Scholar 

  17. Low IM (ed) (2014) Advances in ceramics composites and matrixes. Woodhead Publishing Limited, Cambridge, UK

    Google Scholar 

  18. Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel. Nature 258:703–704

    Article  Google Scholar 

  19. Subba Rao EC (1981) Zirconia—an overview. Advanced Ceramics, vol 3, pp 1–24

    Google Scholar 

  20. McMeeking R, Evans AG (1982) Mechanics of transformation toughening in brittle materials. J Am Ceram Soc 65:242–246

    Google Scholar 

  21. Wiederhorn SM (1984) Brittle fracture and toughening mechanisms in ceramics. Annu Rev Mater Sci 14:374–403

    Google Scholar 

  22. Evans AG (1984) Toughening mechanisms in zirconia alloys. Adv Ceram 12:193–212

    Google Scholar 

  23. Classen N (1984) Microstructural design of zirconia—toughened ceramics (ZTC). Adv Ceram 1:325

    Google Scholar 

  24. Rice RW (1984) Mechanically reliable ceramics. J Phys Chem Solids 45:1033–1050

    Google Scholar 

  25. Ruhle M, Calussen N, Heuer AH (1986) Transformation and microcrack toughening as complementary process in ZrO2—toughened Al2O3. J Am Ceram Soc 69:195

    Google Scholar 

  26. Chawla KK (1987) In: Ilschner B, Grant NJ (eds) Composite materials: science and engineering, materials research and engineering (MSE) series. Springer, New York, USA

    Google Scholar 

  27. Lange FF (1989) Powder processing: science and technology for increased reliability. J Am Ceram Soc 71:3–10

    Google Scholar 

  28. Evans AG, Marshall DB (1989) The mechanical behaviour of ceramic matrix composites. Acta Metall 37:2567–2583

    Article  Google Scholar 

  29. Clegg WJ, Kendall K, Alford NM, Button TW, Birchall TW (1990) A simple way to make tough ceramics. Nature London 347:455–457

    Article  Google Scholar 

  30. Evans AG (1990) Perspective On The Development Of High Toughness Ceramics. J Am Ceram Soc 73:187–206

    Google Scholar 

  31. Mahajan YR, Kuruvilla AK, Bhanu Prasad VV, Chakraborty A (1990) Polymer, metal and ceramic composites (PMC/MMC/CMC): a review. Indian J Technol 28:354–367

    Google Scholar 

  32. Becher PF (1991) Microstructural design of toughened ceramics. J Am Ceram Soc 74:255–269

    Google Scholar 

  33. Steinbrech RW (1992) Toughening mechanisms for ceramic materials. J Euro Ceram Soc 10:131–142

    Article  Google Scholar 

  34. Faber, K.T., 1997, “Ceramic Composite Interfaces: Properties and Design”, Annual Reviews on Materials Science, Vol. 27, Pp.499–524

    Google Scholar 

  35. Ravi Chandran KS, Panda KB, Sahay SS (2004) TiBw-reinforced Ti composites: processing, properties, application prospects and research needs, in overview: Ti–B alloys and composites. J Met 56:42

    Google Scholar 

  36. Singh M, Levine SR (2004) Low cost fabrication of silicon carbide based ceramics fiber reinforced composites. NASA technical memorandum No. 107001, Washington DC, USA

    Google Scholar 

  37. Akira K, Hirotitsu K (2013) SiC/SiC composite materials for nuclear applications. Nucl Saf Simul 4:72–79

    Google Scholar 

  38. Senthil Kumar A, Baruch LJ, King MFL, Oliver DG (2014) Ëxperimental studies on mechanical properties of glass fiber reinforced ceramic matrix composites. Int J Emerg Technol Adv Eng 4:677–681

    Google Scholar 

  39. Wei GC, Becher PF (1985) Development of SiC-Whisker-reinforced ceramics. Am Ceram Soc Bull 64:298–304

    Google Scholar 

  40. Campbell GH, Ruehle M, Dalgleish BJ, Evans AG (1990) Whisker toughening: a comparison between aluminium oxide and silicon nitride toughened with silicon carbide. J Am Ceram Soc 73:521

    Google Scholar 

  41. Zok F, Sbaizero O, Hom CL, Evans AG (1991) Mode I fracture resistance of a laminated fiber-reinforced ceramic. J Am Ceram Soc 74:187

    Article  Google Scholar 

  42. Venkert A, Brandon DG (1991) HREM interface characterisation of sic whisker reinforced alumina composites in advanced structural inorganic composites. Montecatini Terme, Italy

    Google Scholar 

  43. Clegg WJ (1992) The fabrication and failure of laminar ceramic composites. Acta Metall Mater 40:3085–3093

    Article  Google Scholar 

  44. Mitra R, Mahajan YR, Eswara Prasad N, Chiou WA, Ganguly C (1995) Reaction hot pressing and characterisation of MoSi2/SiCp composites. Key Eng Mater 108–110:11

    Article  Google Scholar 

  45. Mitra R, Mahajan YR (1995) Interfaces in discontinuously reinforced metal matrix composites: an overview. Bull Mater Sci 18:405–434

    Article  Google Scholar 

  46. Droillard C, Lamon J (1996) Fracture toughness of 2-D Woven SiC/SiC CVI composites with multilayered interfaces. J Am Ceram Soc 79:849–858

    Article  Google Scholar 

  47. Mitra R, Mahajan YR, Eswara Prasad N, Chiou WA (1997) Processing—microstructure—property relationships in reaction hot pressed MoSi2 and MoSi2/SiCp composites. Mater Sci Eng A 225:105

    Google Scholar 

  48. Nair SV, Wang YL (1998) Toughening behaviour of a two-dimensional SiC/SiC woven composite at ambient temperature I damage initiation and R-Curve behaviour II. Stress displacement relationship in the crack process zone. J Am Ceram Soc 81:1149–1157

    Article  Google Scholar 

  49. Jessen TL, Greenhut VA, Lewis D, Friel JJ (1999) Effect of microstructure on the mechanical behaviour of continuous fiber reinforced ceramic matrix composites. J Am Ceram Soc 82:2753–2761

    Article  Google Scholar 

  50. Cheong DS, Hwang KT, Kim CS (1999) Fabrication, mechanical properties and microstructure analysis of Si3N4/SiC nanocompsite. Compos A Appl Sci Manuf 30:425–427

    Article  Google Scholar 

  51. Ohnabe H, Masaki S, Onozuka M, Miyahara K, Sasa T (1999) Potential application of ceramic matrix composites to aeroengine components. Compos A Appl Sci Manuf 30:489–496

    Article  Google Scholar 

  52. Mitra R, Eswara Prasad N, Kumari S, Venugopal Rao A (2003) High temperature deformation behaviour of coarse and fine grained MoSi2 with different silica contents. Metall Mater Trans A 34A:1069–1088

    Article  Google Scholar 

  53. Kumari S, Eswara Prasad N, Ravichandran KS, Malakondaiah G (2004) High temperature deformation behaviour of Ti-TiBw In-situ metal matrix composites, in research summary: Ti-B alloys and composite. J Met 56:51–56

    Google Scholar 

  54. Eswara Prasad N, Kumari S, Kamat SV, Vijayakumar M, Malakondaiah G (2004) Fracture behaviour of 2D-weaved, silica—silica continuous fibre-reinforced, ceramic-matrix composites (CFCCs). Eng Fract Mech 71:2589–2605

    Article  Google Scholar 

  55. Awaad M, Zawrah MF, Khaili NM (2008) In-situ formation of zirconia-alumina-spinel-mullite ceramic composites. Ceram Int 34:429–434

    Article  Google Scholar 

  56. Heuer AG, Classen N, Kriven WM, Ruehle M (1982) Stability of tetragonal zirconia particles in ceramic matrices. J Am Ceram Soc 65:60–69

    Article  Google Scholar 

  57. Budiansky B, Hutchinson J, Lambroupolos J (1983) Int J Solid Struct 19:325–337

    Google Scholar 

  58. Evans AG, Faber KT (1981) Toughening of ceramics by circumferential microcracking. J Am Ceram Soc 64:394–398

    Article  Google Scholar 

  59. Evans AG, Faber KT (1984) Crack growth resistance of microcracking brittle materials. J Am Ceram Soc 67:255–260

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the support and information they received from several colleagues at DMRL and ASL (two DRDO laboratories in Hyderabad, India) as well as from colleagues elsewhere in India and abroad. They feel particularly indebted to Professor KS Ravi Chandran, Professor Rahul Mitra, Dr. SV Kamat, Dr. A Chakraborty, Mrs. Sweety Kumari, Dr. G Malakondaiah and Dr. D Banerjee. Funding from DRDO and INAE is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Eswara Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Eswara Prasad, N., Anil Kumar, Subramanyam, J. (2017). Ceramic Matrix Composites (CMCs) for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics