Skip to main content

Microalgae-Based Biorefineries as a Promising Approach to Biofuel Production

  • Chapter
  • First Online:
Prospects and Challenges in Algal Biotechnology

Abstract

Microalgae are photosynthetic microorganisms that are capable of converting carbon dioxide, nutrients, and solar energy into biomass and oxygen. In addition, microalgae have high photosynthetic rates, do not require potable water and arable land for cultivation, and can use liquid and gaseous effluents as nutrients for growth. The biochemical composition of microalgae can be manipulated by changing the cultivation conditions and environmental stresses. Thus, these microorganisms can be induced to produce biomass that is rich in biocompounds of commercial importance. The microalgal biomass can be converted into biofuels and high value-added bioproducts. Thus, microalgae have potential uses as renewable raw materials and could provide promising materials for the development of biorefineries. In this context, this chapter examines microalgae within a biorefinery concept and describes the advantages of using microalgae, culture conditions, biocompounds from biomass and the potential for converting them into biofuel and bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD, Long BM et al (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energ Combust 34:551–573

    Article  CAS  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press

    Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford, UK, pp 312–351

    Google Scholar 

  • Bennett SJ, Pearson PJG (2009) From petrochemical complexes to biorefineries? the past and prospective co-evolution of liquid fuels and chemicals production in the UK. Chem Eng Res Des 87:1120–1139

    Article  CAS  Google Scholar 

  • Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum agardh. J Chem Technol Biotechnol 87:505–512

    Article  CAS  Google Scholar 

  • Borges JA, Rosa GM, Meza LHR et al (2013) Spirulina sp. LEB-18 culture using effluent from the anaerobic digestion. Braz J Chem Eng 30:277–287

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Bucy HB, Baumgardner ME, Marchese AJ (2012) Chemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate. Algal Res 1:57–69

    Article  CAS  Google Scholar 

  • Carver SM, Hulatt CJ, Thomas DN et al (2011) Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Biodegradation 22:805–814

    Article  CAS  PubMed  Google Scholar 

  • Castro-Puyana M, Herrero M, Mendiola JA, Ibáñez E (2013) Subcritical water extraction of bioactive components from algae. In: Domínguez H (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Limited, Oxford, pp 534–560

    Chapter  Google Scholar 

  • Cheah WY, Show PL, Chang J-S et al (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technol 184:190–201

    Article  CAS  Google Scholar 

  • Chen B, You W, Huang J et al (2010) Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotech 26:833–840

    Article  CAS  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R et al (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technol 102:71–81

    Article  CAS  Google Scholar 

  • Chen C-Y, Zhao X-Q, Yen H-W et al (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Convers Manage 51:1412–1421

    Article  CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A et al (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recy 53:434–447

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chiu S-Y, Kao C-Y, Chen T-Y et al (2015) Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technol 184:179–189

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Huang TT et al (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technol 102:9135–9142

    Article  CAS  Google Scholar 

  • Chopra K, Bishnoi M (2007) Antioxidant profile of Spirulina: a blue-green microalga. In: Gershwin ME, Belay A (eds) spirulina in human nutrition and health. CRC Press, pp 101–118

    Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Colla LM, Bertolin TE, Costa JAV (2004) Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Z Naturforsch C 59:55–59

    Article  CAS  PubMed  Google Scholar 

  • Costa JAV, Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technol 102:2–9

    Article  CAS  Google Scholar 

  • Costa JAV, Morais MG, Radmann EM et al (2015) Biofixation of carbon dioxide from coal station flue gas using Spirulina sp. LEB 18 and Scenedesmus obliquus LEB 22. African J Microbiol Res 9:2202–2208

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energ Convers Manage 51:2738–2749

    Article  CAS  Google Scholar 

  • Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energ 86:S151–S161

    Article  CAS  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energ 88:3473–3480

    Article  CAS  Google Scholar 

  • Díaz-Palma P, Stegen S, Queirolo F et al (2012) Biochemical profile of halophilous microalgae strains from high-andean extreme ecosystems (NE-Chile) using methodological validation approaches. J Biosci Bioeng 113:730–736

    Article  CAS  PubMed  Google Scholar 

  • Doebbe A, Keck M, La Russa M et al (2010) The interplay of proton, electron, and metabolite supply fors photosynthetic H2 production in Chlamydomonas reinhardtii. J Biol Chem 285:30247–30260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU et al (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:1–7

    Article  CAS  Google Scholar 

  • Dvir I, Stark AH, Chayoth R et al (2009) Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dufosse L, Galaupa P, Yaron A, Arad AM, Kotamballi PB, Murthy NC, Ravishankard GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Tech 16:389–406

    Article  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Fedorov SN, Ermakova SP, Zvyagintseva TN et al (2013) Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 11:4876–4901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández-Reiriz MJ, Perez-Camacho A, Ferreiro MJ et al (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83:17–37

    Article  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Gerardo ML, Oatley-Radcliffe DL, Lovitt RW (2014) Integration of membrane technology in microalgae biorefineries. J Membrane Sci 464:86–99

    Article  CAS  Google Scholar 

  • Ghatak HR (2011) Biorefineries from the perspective of sustainability: feedstocks, products, and processes. Renew Sust Energ Rev 15:4042–4052

    Article  CAS  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    Article  CAS  Google Scholar 

  • Goiris K, Van Colen W, Wilches I et al (2015) Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res 7:51–57

    Article  Google Scholar 

  • Gonçalves AL, Simões M, Pires JCM (2014) The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energ Convers Manage 85:530–536

    Article  CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  CAS  PubMed  Google Scholar 

  • Grima EM, Belarbi E-H, Acién Fernández FG et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  CAS  PubMed  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010a) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Harun R, Singh M, Forde GM et al (2010b) Bioprocess engineering of microalgae to produce a variety of consumer product. Renew Sust Energ Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • He S, Fan X, Katukuri NR et al (2016) Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresource Technol 204:145–151

    Article  CAS  Google Scholar 

  • Henrard AA, Rosa GM, Moraes L et al (2014) Effect of the carbon concentration, blend concentration, and renewal rate in the growth kinetic of Chlorella sp. Sci World J 2014:1–9

    Article  Google Scholar 

  • Hernández D, Riaño B, Coca M et al (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  CAS  Google Scholar 

  • Hernández D, Solana M, Riaño B et al (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresource Technol 170:370–378

    Article  CAS  Google Scholar 

  • Hosikian A, Lim S, Halim R et al (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng 2010:1–11

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Chen F, Wei D et al (2010) Biodiesel production by microalgal biotechnology. Appl Energ 87:38–46

    Article  CAS  Google Scholar 

  • Huber GW, Corma A (2007) Synergies between bio-and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201

    Article  CAS  Google Scholar 

  • Huleihel M, Ishanu V, Tal J et al (2001) Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol 13:127–134

    Article  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69(3):443–449

    Article  CAS  PubMed  Google Scholar 

  • Ike A, Toda N, Tsuji N et al (1997) Hydrogen photoproduction from CO2-fixing microalgal biomass: application of halotolerant photosynthetic bacteria. J Ferment Bioeng 84:606–609

    Article  CAS  Google Scholar 

  • Jeon B-H, Choi J-A, Kim H-C et al (2013) Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol Biofuels 6:37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products, vols 1 and 2. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Kao CY, Chiu SY, Huang TT et al (2012) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl Energ 93:176–183

    Article  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Yim JH, Kim SY et al (2012) In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res 93:253–259

    Article  CAS  PubMed  Google Scholar 

  • Kim S-K, Kang K-H (2011) Medicinal Effects of Peptides from Marine Microalgae. Adv Food Nutr Res 64:313–323

    Article  CAS  PubMed  Google Scholar 

  • Kim S-S, Ly HV, Kim J et al (2015) Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification. Chem Eng J 263:194–199

    Article  CAS  Google Scholar 

  • Kokossis AC, Yang A (2010) On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Comput Chem Eng 34:1397–1405

    Article  CAS  Google Scholar 

  • Koller M, Salerno A, Braunegg G (2015) Value-added Products from Algal Biomass. In: Perosa A, Bordignon G, Ravagnan G, Zinoviev S (eds) Algae as a potential source of food and energy in developing countries sustainability, technology and selected case studies, 1st edn. Edizioni Ca’ Foscari - Digital Publishing, Venice, p 22

    Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ergas S, Yuan X et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Control 10:456–469

    Article  CAS  Google Scholar 

  • Lee J-N, Lee J-S, Shin C-S et al (2000) Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas. Appl Biochem Biotech 84–86:329–342

    Article  Google Scholar 

  • Li Y, Horsman M, Wu N et al (2008) Biofuels from microalgae. Biotechnol Progr 24:815–820

    CAS  Google Scholar 

  • Lisboa CR, Pereira AM, Ferreira SP et al (2014) Utilisation of Spirulina sp. and Chlorella pyrenoidosa biomass for the production of enzymatic protein hydrolysates. Int J Eng Res Appl 4:29–38

    Google Scholar 

  • Liu C-H, Chang C-Y, Liao Q et al (2013) Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrogen Energ 38:15807–15814

    Article  CAS  Google Scholar 

  • Lü F, Ji J, Shao L et al (2013) Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels 6:92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu J, Takeuchi T, Satoh H (2004) Ingestion and assimilation of three species of freshwater algae by larval tilapia Oreochromis niloticus. Aquaculture 238:437–449

    Article  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresource Technol 70:1–15

    Article  CAS  Google Scholar 

  • Mabee WE, Gregg DJ, Saddler JN (2005) Assessing the emerging biorefinery sector in Canada. Appl Biochem Biotech 121–124:765–778

    Article  Google Scholar 

  • Mahdy A, Mendez L, Ballesteros M et al (2014) Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energ Convers Manage 85:551–557

    Article  CAS  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biot 84:281–291

    Article  CAS  Google Scholar 

  • Margarites ACF, Costa JAV (2014) Increment of carbohydrate concentration of Chlorella minutissima microalgae for bioethanol production. J Eng Res Appl 4:2248–962280

    Google Scholar 

  • Marques AE, Barbosa AT, Jotta J et al (2011) Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: light, nickel, propane, carbon dioxide and nitrogen. Biomass Bioenerg 35:4426–4434

    Article  CAS  Google Scholar 

  • Martins RG, Severo Gonçalves I, Morais MG et al (2014) Bioprocess Engineering Aspects of Biopolymer Production by the Cyanobacterium Spirulina Strain LEB 18. Int J Polym Sci 2014:1–6

    Article  CAS  Google Scholar 

  • Mary Leema JT, Kirubagaran R, Vinithkumar NV et al (2010) High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technol 101:9221–9227

    Article  CAS  Google Scholar 

  • Masojídek J, Torzillo G, Koblížek M (2013) Photosynthesis in Microalgae. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture. John Wiley & Sons Ltd, Oxford, UK, pp 21–36

    Chapter  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsui MS, Muizzuddin N, Arad S et al (2003) Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotech 104:13–22

    Article  CAS  Google Scholar 

  • Matsumoto M, Yokouchi H, Suzuki N et al (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotech 105–108:247–254

    Article  Google Scholar 

  • Meyer MA, Weiss A (2014) Life cycle costs for the optimized production of hydrogen and biogas from microalgae. Energy 78:84–93

    Article  CAS  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  • Mirsiaghi M, Reardon KF (2015) Conversion of lipid-extracted Nannochloropsis salina biomass into fermentable sugars. Algal Res 8:145–152

    Article  Google Scholar 

  • Moraes CC, De Medeiros Burkert JF, Kalil SJ (2010) C-phycocyanin extraction process for large-scale use. J Food Biochem 34:133–148

    Article  Google Scholar 

  • Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  CAS  PubMed  Google Scholar 

  • Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Convers Manage 48:2169–2173

    Article  CAS  Google Scholar 

  • Morais MG, Costa JAV (2007c) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Morais MG, Costa JAV (2008) Bioprocesses for removal of carbon dioxide and nitrogen oxide by microalgae for the utilization of gas generated during coal burning. Quim Nova 31:1038–1042

    Article  Google Scholar 

  • Morais MG, Radmann EM, Andrade MR et al (2009) Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture 294:60–64

    Article  Google Scholar 

  • Morais MG, Reichert CDC, Dalcanton F et al (2008) Isolation and characterization of a new Arthrospira strain. Z Naturforsch C 63:144–150

    Article  PubMed  Google Scholar 

  • Morais MG, Stillings C, Dersch R et al (2015a) Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer. Biomed Res Int 2015:1–8

    CAS  Google Scholar 

  • Morais MG, Stillings C, Dersch R et al (2015b) Extraction of poly(3-hydroxybutyrate) from Spirulina LEB 18 for developing nanofibers. Polímeros 25:161–167

    Article  Google Scholar 

  • Moreira JB, Costa JAV, Morais MG (2016) Evaluation of different modes of operation for the production of Spirulina sp. J Chem Technol Biotechnol 91:1345–1348

    Article  CAS  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PMR et al (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  CAS  PubMed  Google Scholar 

  • Naik SN, Goud VV, Rout PK et al (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nautiyal P, Subramanian KA, Dastidar MG (2014) Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction–transesterification process. Fuel 135:228–234

    Article  CAS  Google Scholar 

  • Negoro M, Shioji N (1991) Growth of Microalgae in High CO2 Gas and Effects of SOx and NOx. Appl Biochem Biotech 2:877–886

    Article  Google Scholar 

  • Nguyen MT, Choi SP, Lee J et al (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotech 19:161–166

    Article  CAS  Google Scholar 

  • Ni M, Leung DYC, Leung MKH et al (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  • Nobre BP, Villalobos F, Barragán BE et al (2013) A biorefinery from Nannochloropsis sp. microalga—extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technol 135:128–136

    Article  CAS  Google Scholar 

  • Noüe J de la, Laliberté G, Proulx D (1992) Algae and waste water. J Appl Phycol 4: 247–254

    Google Scholar 

  • Norsker N, Barbosa MJ, Vermuë MH et al (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  PubMed  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae–bacteria based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  CAS  PubMed  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-Algal Biotechnology. Cambridge University Press, Cambridge, UK, pp 305–328

    Google Scholar 

  • Panda B, Jain P, Sharma L et al (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresource Technol 97:1296–1301

    Article  CAS  Google Scholar 

  • Panda B, Mallick N (2007) Enhanced poly-beta-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Lett Appl Microbiol 44:194–198

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Yoon J-J, Park H-D et al (2012) Anaerobic digestibility of algal bioethanol residue. Bioresource Technol 113:78–82

    Article  CAS  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG et al (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biot 65:635–648

    Article  CAS  Google Scholar 

  • Radmann EM, Camerini FV, Santos TD et al (2011) Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energ Convers Manage 52:3132–3136

    Article  CAS  Google Scholar 

  • Radmann EM, Costa JAV (2008) Lipid content and fatty acids composition variation of microalgae exposed to CO2, SO2 and NO. Quim Nova 31:1609–1612 (In portuguese)

    Article  CAS  Google Scholar 

  • Rashid N, Rehman MSU, Han JI (2013) Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem Eng J 75:101–107

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T et al (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energ 88:3411–3424

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA et al (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev 27:622–653

    Article  CAS  Google Scholar 

  • Reichert CC, Reinehr CO, Costa JAV (2006) Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor. Braz J Chem Eng 23:23–28

    Article  Google Scholar 

  • Romay CH, González R, Ledón N et al (2003) C-Phycocyanin: a biliprotein with antioxidant, anti-Inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  CAS  PubMed  Google Scholar 

  • Romero García JM, Acién Fernández FG, Fernández Sevilla JM (2012) Development of a process for the production of L-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresource Technol 112:164–170

    Article  CAS  Google Scholar 

  • Romero-García JM, Niño L, Martínez-Patiño C et al (2014) Biorefinery based on olive biomass. State of the art and future trends. Bioresource Technol 159:421–432

    Article  CAS  Google Scholar 

  • Rosa GM, Moraes L, Cardias BB et al (2015) Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with Nutrient Recycle. Bioresource Technol 192:321–327

    Article  CAS  Google Scholar 

  • Rosa GM, Moraes L, Souza MRAZ et al (2016) Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production. Bioresource Technol 200:528–534

    Article  CAS  Google Scholar 

  • Sarada R, Pillai MG, Ravishankar GA (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34:795–801

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schneider RCS, Bjerk TR, Gressler PD et al (2012) Potential production of biofuel from microalgae biomass produced in wastewater. In: Fang Z (ed) Biodiesel—feedstocks. Production and Applications, InTech, p 498

    Google Scholar 

  • Schwede S, Rehman Z-U, Gerber M et al (2013) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresource Technol 143:505–511

    Article  CAS  Google Scholar 

  • Shahidi F, Zhong Y (2008) Bioactive Peptides. J AOAC Int 91:914–931

    CAS  PubMed  Google Scholar 

  • Sharma L, Mallick N (2005) Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources. Bioresource Technol 96:1304–1310

    Article  CAS  Google Scholar 

  • Shrivastav A, Mishra SK, Mishra S (2010) Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol 46:255–260

    Article  CAS  PubMed  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  PubMed  Google Scholar 

  • Silva TL, Gouveia L, Reis A (2014) Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biot 98:1043–1053

    Google Scholar 

  • Silva-Benavides AM, Torzillo G (2012) Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J Appl Phycol 24:267–276

    Article  CAS  Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st to 2nd generation biofuel technologies-IEA, p 124

    Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technol 102:26–34

    Article  CAS  Google Scholar 

  • Somleva MN, Peoples OP, Snell KD (2013) PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnol J 11:233–252

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energ Policy 38:5892–5901

    Article  Google Scholar 

  • Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326

    CAS  Google Scholar 

  • Talukder MMR, Das P, Wu JC (2012) Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem Eng J 68:109–113

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1996) Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technol 57:45–50

    Article  CAS  Google Scholar 

  • Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA et al (2012) Catalytic pyrolysis of green algae for hydrocarbon production using H + ZSM-5 catalyst. Bioresource Technol 118:150–157

    Article  CAS  Google Scholar 

  • Trivedi J, Aila M, Bangwal DP et al (2015) Algae based biorefinery—How to make sense? Renew Sust Energ Rev 47:295–307

    Article  CAS  Google Scholar 

  • Unpaprom Y, Tipnee S, Rameshprabu R (2015) Biodiesel from green alga Scenedesmus acuminatus. Int J Sustain Green Energy 4:1–6

    Article  CAS  Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ et al (2013) Biorefinery of microalgae for food and fuel. Bioresource Technol 135:142–149

    Article  CAS  Google Scholar 

  • Weiss H (2008) Method for growing photosynthetic organisms. US patent 20080220486

    Google Scholar 

  • Wieczorek N, Kucuker MA, Kuchta K (2014) Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process. Appl Energ 132:108–117

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Williams PJLB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review and analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Wong Y-S, Tam NFY (eds) (1998) Wastewater Treatment with Algae, 1st edn. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  • Wu H, Miao X (2014) Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresource Technol 170:421–427

    Article  CAS  Google Scholar 

  • Xiao FG, Shen L, Ji HF (2011) On photoprotective mechanisms of carotenoids in light harvesting complex. Biochem Biophys Res Commun 414:1–4

    Article  CAS  PubMed  Google Scholar 

  • Xuan J, Leung MKH, Leung DYC et al (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sust Energ Rev 13:1301–1313

    Article  CAS  Google Scholar 

  • Yang Z, Guo R, Xu X et al (2011) Fermentative hydrogen production from lipid-extracted microalgal biomass residues. Appl Energ 88:3468–3472

    Article  CAS  Google Scholar 

  • Yen H-W, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technol 98:130–134

    Article  CAS  Google Scholar 

  • Yen H-W, Hu I-C, Chen C-Y et al (2013) Microalgae-based biorefinery - From biofuels to natural products. Bioresource Technol 135:166–174

    Article  CAS  Google Scholar 

  • Yoshihara K-I, Nagase H, Eguchi K et al (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferment Bioeng 82:351–354

    Article  CAS  Google Scholar 

  • Yousuf A (2012) Biodiesel from lignocellulosic biomass—Prospects and challenges. Waste Manage 32:2061–2067

    Article  CAS  Google Scholar 

  • Yusuf NNAN, Kamarudin SK, Yaakub Z (2011) Overview on the current trends in biodiesel production. Energ Convers Manage 52:2741–2751

    Article  CAS  Google Scholar 

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew Sust Energ Rev 31:121–132

    Article  CAS  Google Scholar 

  • Zhao B, Su Y, Zhang Y et al (2015) Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy 89:347–357

    Article  CAS  Google Scholar 

  • Zhou W, Chen P, Min M et al (2014) Environment-enhancing algal biofuel production using wastewaters. Renew Sust Energ Rev 36:256–269

    Article  Google Scholar 

  • Zhu L (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sust Energ Rev 41:1376–1384

    Article  Google Scholar 

  • Zhu L, Hiltunen E, Shu Q et al (2014) Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid. Appl Energ 128:103–110

    Article  CAS  Google Scholar 

  • Zhu L, Ketola T (2012) Microalgae production as a biofuel feedstock: risks and challenges. Int J Sust Dev World 19:268–274

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the following Brazilian development agencies: the CAPES (Coordination for the Improvement of Higher Education Personnel), R&D Program ANEEL-Eletrobrás CGTEE (National Agency of Electric Energy-Company of Thermal Generation of Electric Power), CNPq (National Council of Technological and Scientific Development), and MCTI (Ministry of Science, Technology and Innovation), and the Program to Support the Production of Publication Academic/PROPESP/FURG/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alberto Vieira Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa, J.A.V., Moraes, L., Moreira, J.B., da Rosa, G.M., Henrard, A.S.A., de Morais, M.G. (2017). Microalgae-Based Biorefineries as a Promising Approach to Biofuel Production. In: Tripathi, B., Kumar, D. (eds) Prospects and Challenges in Algal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1950-0_4

Download citation

Publish with us

Policies and ethics