Skip to main content

Tropospheric O3: A Cause of Concern for Terrestrial Plants

  • Chapter
  • First Online:
Plant Responses to Air Pollution

Abstract

Tropospheric ozone (O3) is a phytotoxic pollutant causing risk to food production, pasture, and forest communities. In the present scenario, unsustainable resource utilization has turned this secondary pollutant into a major component of global climate change. The background levels of O3 are very high, and IPCC projections have shown that it will increase by 20–25 % in 2050 and 40–60 % in 2100, causing severe consequence on global food security. Ozone enters plants through stomata, where it can be dissolved in the apoplastic fluid. Ozone has several potential effects on plants: direct reaction with cell membranes, generation of ROS and H2O2 (which alter cellular function by causing cell death), induction of premature senescence, negative impact on photosynthetic machinery and up- or downregulation of antioxidants, defense reactions, and variations in metabolic pathways. Tropospheric O3 causes changes in tree diameter, wood quality, herbivory pattern, forage quality, and crop yield and quality. In this chapter, we make an attempt to present an overview of O3 concentrations throughout the globe and its impact on agricultural crops, forest, and grassland ecosystems. We summarized the information available on plant responses to O3 at physiological, cellular, and biochemical levels; crop yield; and forest and grassland communities at present concentrations and also under projected future concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agathokleous E, Saitanis CJ, Koike T (2015) Tropospheric O3, the nightmare of wild plants: a review study. J Agr Meteorol 71:142–152

    Article  Google Scholar 

  • Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  CAS  PubMed  Google Scholar 

  • Agrawal SB, Singh A, Rathore D (2005) Role of ethylene diurea (EDU) in assessing impact of ozone on Vigna radiata L. plants in a suburban area of Allahabad (India). Chemosphere 61:218–228

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA (2008) Rice production in a changing climate: a metaźanalysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Chang Biol 14:1642–1650

    Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Ali K, Inamdar SR, Beig G, Ghude S, Peshin S (2012) Surface ozone scenario at Pune and Delhi during the decade of 1990s. J Earth Syst Sci 121:373–383

    Article  CAS  Google Scholar 

  • Anav A, Menut L, Khvorostyanov D, Viovy N (2011) Impact of tropospheric ozone on the Euro-Mediterranean vegetation. Glob Chang Biol 17:2342–2359

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Barbo DN, Chappelka AH, Somers GL, Miller- Goodman MS, Stolt K (1998) Diversity of an early successional plant community as influenced by ozone. New Phytol 138:653–662

    Article  CAS  Google Scholar 

  • Bass DJ, Barnes JD, Lyons T, Mills G (2006) The impact of tropospheric ozone on semi- natural vegetation. PhD thesis, Newcastle University, UK

    Google Scholar 

  • Bassin S, Kolliker R, Cretton C, Bertossa M, Widmer F, Bungener P, Fuhrer J (2004) Intra- specific variability of ozone sensitivity in Centaurea jacea L., a potential bioindicator for elevated ozone concentrations. Environ Pollut 131:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bassin S, Volk M, Fuhrer J (2007) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Pollut 146:678–691

    Article  CAS  PubMed  Google Scholar 

  • Beig G, Gunthe S, Jadhav DB (2007) Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi urban site in India. J Atmos Chem 57:239–253

    Article  CAS  Google Scholar 

  • Bender J, Muntiferang RB, Lin JC, Weigel HJ (2006) Growth and nutritive quality of Poa pratensis as influenced by ozone and fumigation. Environ Pollut 142:109–115

    Article  CAS  PubMed  Google Scholar 

  • Bennett JP, Rassat P, Berrang P, Karnosky DF (1992) Relationships between leaf anatomy and ozone sensitivity of Fraxinus pennsylvanica Marsh and Prunus serotina Ehrh. Environ Exp Bot 32:33–41

    Article  CAS  Google Scholar 

  • Bergmann E, Bender J, Weigel HJ (1995) Growth responses and foliar sensitivities of native herbaceous species to ozone exposure. Water Air Soil Pollut 85:1437–1442

    Article  CAS  Google Scholar 

  • Bermejo V, Gimeno BS, Sanz J, de la Torre D, Gil JM (2003) Assessment of the ozone sensitivity of 22 native plant species from Mediterranean annual pastures based on visible injury. Atmos Environ 37:4667–4677

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Leakey AD, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully openźair field conditions. Plant Cell Environ 29:2077–2090

    Google Scholar 

  • Betzelberger AM, Gillespie KM, Mcgrath JM, Koester RP, Nelson R, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1561–1589

    Google Scholar 

  • Bishop JA, Cook LM (1981) Genetic consequences of man made change. Academic, London

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008a) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Chang Biol 14:46–59

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Liu MZ, Chen YH, Sun JZ, Jiang GM (2008b) Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. J Exp Bot 59:951–963

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot Lond 91:179–194

    Article  CAS  Google Scholar 

  • Blum U, Smith GR, Fites RC (1982) Effects of multiple O3 exposures on carbohydrates and mineral contents of ladino clover. Environ Exp Bot 22:143–154

    Article  CAS  Google Scholar 

  • Booker FL, Miller JE (1998) Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L.) Merr] leaves following exposure to ozone. J Exp Bot 49:1191–1202

    Article  CAS  Google Scholar 

  • Booker FL, Burkey KO, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: I. Gas-exchange, biomass, and leaf chemistry. Crop Sci 47:1475–1487

    Article  CAS  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Sagar K, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351

    Article  CAS  PubMed  Google Scholar 

  • Burns JC, Heagle AS, Fisher DS (1997) Nutritive value of ozone sensitive and resistant Ladino white clover clones after chronic ozone and carbon dioxide exposure. In: Advances in carbon dioxide effects research. ASA Spec Publ Madison (WI): American Society of Agronomy 61: 153–167

    Google Scholar 

  • Bussotti F, Agati G, Desotgiu R, Matteini P, Tani C (2005) Ozone foliar symptoms in woody plant species assessed with ultrastructural and fluorescence analysis. New Phytol 142:283–293

    Google Scholar 

  • Bussotti F, Desotgiu R, Cascio C, Pollastrini M, Gravano E, Gerosa G, Strasser RJ (2011) Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ Exp Bot 73:19–30

    Article  CAS  Google Scholar 

  • Calatayud A, Barreno E (2001) Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ Pollut 115:283–289

    Article  CAS  PubMed  Google Scholar 

  • Calatayud V, Cerveró J, Sanz MJ (2007) Foliar, physiological and growth responses of four maple species exposed to ozone. Water Air Soil Pollut 185:239–254

    Article  CAS  Google Scholar 

  • Calatayud V, Cerveró J, Calvo E, García-Breijo FJ, Reig-Armiñana J, Sanz MJ (2011) Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ Pollut 159:55–63

    Article  CAS  PubMed  Google Scholar 

  • Caregnato FF, Bortolin RC, Junior AMD, Moreira JCF (2013) Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. Chemosphere 93:320–330

    Article  CAS  PubMed  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environ Pollut 157:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Chappelka AH, Samuelson LJ (1998) Ambient ozone effects on forest trees of the eastern United States: a review. New Phytol 139:91–108

    Article  CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2013) Intraspecific responses of six Indian clover cultivars under ambient and elevated levels of ozone. Environ Sci Pollut R 20:5318–5329

    Article  CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2015) The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotoxcol Environ Safe 111:286–294

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier A, Gheusi F, Delmas R, Ordonez C, Sarrat C, Zbinden R, Thouret V, Athie G, Cousin JM (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326

    Article  CAS  Google Scholar 

  • Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas JP, Oltmans SJ, Johnson BJ, Tarasick D, Leblanc T, McDermid IS, Jaffe D, Gao R, Stith J, Ryerson T, Aikin K, Campos T, Weinheimer A, Avery MA (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463:344–348

    Article  CAS  PubMed  Google Scholar 

  • D’Haese D, Vandermeiren K, Asard H, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632

    Article  Google Scholar 

  • Danielsson H, Karlsson PE, Pleijel H (2013) An ozone response relationship for four Phleum pratense genotypes based on modelling of the phytotoxic ozone dose (POD). Environ Exp Bot 90:70–77

    Article  CAS  Google Scholar 

  • Darbah JN, Kubiske ME, Nelson N, Kets K, Riikonen J, Sober A, Karnosky DF (2010) Will photosynthetic capacity of aspen trees acclimate after long-term exposure to elevated CO2 and O3? Environ Pollut 158:983–991

    Article  CAS  PubMed  Google Scholar 

  • Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139:135–151

    Article  CAS  Google Scholar 

  • De Bock M, Ceulemans R, Horemans N, Guisez Y, Vandermeiren (2012) Photosynthesis and crop growth of spring oilseed rape and broccoli under elevated tropospheric ozone. Environ Exp Bot 82:28–36

    Article  CAS  Google Scholar 

  • Derwent RG, Simmonds PG, Manning AJ, Spain TG (2007) Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland. Atmos Environ 41:9091–9098

    Article  CAS  Google Scholar 

  • Diara C, Castagna A, Baldan B, Mensuali Sodi A, Sahr T, Langebartels C, Sebastiani L, Ranieri A (2005) Differences in the kinetics and scale of signaling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid. New Phytol 168:351–364

    Article  CAS  PubMed  Google Scholar 

  • EANET (2006) Data report on acid deposition on East Asia Region 2005. Network Centre of EANET, Japan. http://www.eanet.cc/. Accessed 16 August 2015

    Google Scholar 

  • Eckardt NA, Pell EJ (1994) O3źinduced degradation of Rubisco protein and loss of Rubisco mRNA in relation to leaf age in Solanum tuberosum L. New Phytol 127:741–748

    Google Scholar 

  • Emberson LD, Buker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayshi K, Oanh OTR, Quadir QF, Wahid A (2009) A comparison of North-American and Asian exposure-response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    Article  CAS  Google Scholar 

  • Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519

    Article  CAS  Google Scholar 

  • Feng Z, Wang X, Zheng Q, Feng Z, Xie J, Chen Z (2006) Response of gas exchange of rape to ozone concentration and exposure regime. Acta Ecol Sin 26:823–829

    Article  CAS  Google Scholar 

  • Feng ZZ, Yao FF, Chen Z, Wang XK, Zheng QW, Feng ZW (2007) Response of gas exchange and yield components of field grown Triticum aestivum L. to elevated ozone in China. Photosynthetica 45:441–446

    Article  CAS  Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a metaźanalysis. Global Chang Biol 14:2696–2708

    Google Scholar 

  • Feng Z, Kobayashi K, Wang X, Feng Z (2009) A meta-analysis of responses of wheat yield formation to elevated ozone concentration. Chin Sci Bull 54:249–255

    Article  CAS  Google Scholar 

  • Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Niu J, Zhang W, Wang X, Yao F, Tian Y (2011a) Effects of ozone exposure on sub-tropical evergreen Cinnamomum camphora seedlings grown in different nitrogen loads. Trees 25:617–625

    Article  CAS  Google Scholar 

  • Feng Z, Pang J, Kobayashi K, Zhu J, Ort DR (2011b) Differential responses in two varieties of winter wheat to elevated ozone concentration under fully openźair field conditions. Global Chang Biol 17:580–591

    Google Scholar 

  • Fernandeź IG, Bass D, Muntifering R, Mills G, Barnes J (2008) Impacts of ozone pollution on productivity and forage quality of grass/clover swards. Atmos Environ 42:8755–8769

    Article  CAS  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois JJB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198

    Article  CAS  Google Scholar 

  • Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover clones exposed to ozone. Environ Exp Bot 60:11–19

    Article  CAS  Google Scholar 

  • Frei M, Kohno Y, Wissuwa M, Makkar HPS, Becker KL (2011) Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL. Glob Chang Biol 17:2319–2329

    Article  Google Scholar 

  • Fuhrer J (2009) Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96:173–194

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J, Shariat- Madari H, Perler R, Tschannew W, Grub A (1994) Effects of ozone on managed pasture II. Yield species composition canopy structure and forage quality. Environ Pollut 97:91–106

    Article  Google Scholar 

  • Fuhrer J, Ashmore MR, Mills G, Hayes F, Davison A (2003) Critical levels for semi-natural vegetation. In: Karlsson PE, Sellden G, Pleijel H (eds) Establishing ozone critical levels II. IVL, Stockholm, pp 183–198

    Google Scholar 

  • Gielen B, Löw M, Deckmyn G, Metzger U, Franck F, Heerdt C, Ceulemans R (2007) Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. J Exp Bot 58:785–795

    Article  CAS  PubMed  Google Scholar 

  • Gilliland NJ, Chappelka AH, Muntifering RB, Booker FL, Ditchkoff SS (2012) Digestive utilization of ozone-exposed forage by rabbits (Oryctolagus cuniculus). Environ Pollut 163:281–286

    Article  CAS  PubMed  Google Scholar 

  • Gimeno BS, Bermejo V, Sanz J, de la Torre D, Elvira S (2004) Growth response to ozone of annual species from Mediterranean pastures. Environ Pollut 132:297–306

    Article  CAS  PubMed  Google Scholar 

  • Gonźalez-Fernandeź I, Bass D, Muntifering R, Mills G, Barnes J (2009) Impacts of ozone pollution on productivity and forage quality of grass/ clover swards. Atmos Environ 42:8755–8769

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Martinelli F, Piras M (2009) Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars. Environ Exp Bot 66:117–125

    Article  CAS  Google Scholar 

  • Harmens, H (2014) Air pollution and vegetation: ICP Vegetation annual report 2013/2014 Type of book: monografija Formal editor/s: Harmens, Harry; Mills, Gina; Hayes, Felicity; Sharps, Katrina, Frontasyeva, Marina

    Google Scholar 

  • Hassan IA, Tewfik I (2006) CO2 photo assimilation, chlorophyll fluorescence, lipid peroxidation and yield in cotton (Gossypium hirsutum L. cv Giza 65) in response to O3. World Rev Sci Techno Sust Dev 3:70–78

    Article  Google Scholar 

  • Hayes F, Jones MLM, Mills G, Ashmore M (2007a) Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environ Pollut 146:754–762

    Article  CAS  PubMed  Google Scholar 

  • Hayes F, Mills G, Harmens H, Norris D (2007b) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). ICP Vegetation Programme Coordination Centre, CEH Bangor, UK

    Google Scholar 

  • Hayes F, Mills G, Ashmore M (2009) Effects of ozone on inter-and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens. Environ Pollut 157:208–214

    Article  CAS  PubMed  Google Scholar 

  • Herbinger K, Then C, Löw M, Haberer K, Alexous M, Koch N, Wieser G (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environ Pollut 137:476–482

    Article  CAS  PubMed  Google Scholar 

  • Hofer N, Alexou M, Heerdt C, Löw M, Werner H, Matyssek R, Haberer K (2008) Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system. Environ Pollut 154:241–253

    Article  CAS  PubMed  Google Scholar 

  • Hoshika Y, Omasa K, Paoletti E (2013) Both ozone exposure and soil water stress are able to induce stomatal sluggishness. Environ Exp Bot 88:19–23

    Article  CAS  Google Scholar 

  • Iglesias DJ, Calatayud A, Primo-Millo EBE, Talon M (2006) Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid Peroxidation. Plant Physiol Biochem 44:125–131

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013. The physical science basis. www.ipcc.ch

  • IPCC (2014) Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, … & Vuuren D Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Iqbal M, Abdin M, Mahmooduzzafar Z, Yunus M, Agrawal M (1996) Resistance mechanisms in plants against air pollution. In: Iqbal M, Yunus M (eds) Plant response to air pollution. Wiley, New York, pp 195–240

    Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe D, Ray J (2007) Increase in surface ozone at rural sites in the western US. Atmos Environ 41:5452–5463

    Article  CAS  Google Scholar 

  • Jain SL, Arya BC, Kumar A, Ghude SD, Kulkarni PS (2005) Observational study of surface ozone at New Delhi, India. Int J Remote Sens 26:3515–3524

    Article  Google Scholar 

  • Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos Environ 42:5434–5445

    Article  CAS  Google Scholar 

  • Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981

    Article  CAS  Google Scholar 

  • Karnosky DF, Skelly JM, Percy KE, Chappelka AH (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489–506

    Article  CAS  PubMed  Google Scholar 

  • Kitao M, Löw M, Heerdt C, Grams TE, Häberle KH, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544

    Article  CAS  PubMed  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Kostiainen K, Kaakinen S, Warsta E, Kubiske ME, Nelson ND, Sober J, Karnosky DF, Saranpaa P, Vapaavuori E (2008) Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO2 and O3. Tree Physiol 28:805–813

    Article  CAS  PubMed  Google Scholar 

  • Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90:1163–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langner J, Engardt M, Baklanov A, Christensen JH, Gauss M, Geels C, Hedegaard GB, Nuterman R, Simpson D, Soares J, Sofiev M, Wind P, Zakey A (2012) A multi-model study of impacts of climate change on surface ozone in Europe. Atmos Chem Phys 12:10423–10440

    Article  CAS  Google Scholar 

  • Leitao L, Delacôte E, Dizengremel P, Le Thiec D, Biolley JP (2007) Assessment of the impact of increasing concentrations of ozone on photosynthetic components of maize (Zea mays L.), a C 4 plant. Environ Pollut 146:5–8

    Article  CAS  PubMed  Google Scholar 

  • Lombardozzi D, Sparks JP, Bonan G, Levis S (2012) Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169:651–659

    Article  PubMed  Google Scholar 

  • Lu T, He X, Chen W, Yan K, Zhao T (2009) Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidant systems in Ginkgo biloba leaves. B Environ Contam Tox 83:92–96

    Article  CAS  Google Scholar 

  • Madkour SA, Laurence JA (2002) Egyptian plant species as new ozone indicators. Environ Pollut 120:339–353

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra PS, Jena J, Moharana S, Srichandan H, Das T, Chaudhury GR, Das SN (2012) Surface ozone variation at Bhubaneswar and intra-corelationship study with various parameters. J Earth Syst Sci 121:1163–1175

    Article  CAS  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    Article  CAS  PubMed  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL, Tignor M (eds) Climate change 2007: the physical basis contribution of working group I to fourth assessment report of IPCC on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Malsumoto K, Sa M, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  CAS  Google Scholar 

  • Mills G, Hayes F, Jones MLM, Cinderby S (2007) Identifying ozone sensitive communities of (semi-) natural vegetation suitable for mapping exceedance of critical levels. Environ Pollut 146:736–743

    Article  CAS  PubMed  Google Scholar 

  • Mills G, Hayes F, Wilkinson S, Davies WJ (2009) Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Global Chang Biol 15:1522–1533

    Article  Google Scholar 

  • Mishra AK, Agrawal SB (2015) Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. Protoplasma 252:797–811

    Article  CAS  PubMed  Google Scholar 

  • Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584

    Article  CAS  Google Scholar 

  • Monks PS (2005) Gas phase chemistry in the troposphere. Chem Soc Rev 34:376–395

    Article  CAS  PubMed  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  PubMed  Google Scholar 

  • Nali C, Pucciariello C, Mills G, Lorenzini G (2005) On the different sensitivity of white clover clones to ozone: physiological and biochemical parameters in a multivariate approach. Water Air Soil Pollut 164:137–153

    Article  CAS  Google Scholar 

  • Novak K, Schaub M, Fuhrer J, Skelly JM, Hug C, Landolt W, Kräuchi N (2005) Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species. Environ Pollut 136:33–45

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum S, Bungener P, Geissman M, Fuhrer J (2000) Plant-plant interactions and soil moisture might be important in determining ozone impacts on grasslands. New Phytol 147:327–335

    Article  CAS  Google Scholar 

  • Ollinger SV, Aber JD, Reich PB (1997) Simulating ozone effects on forest productivity: interactions among leaf-, and standlevel processes. Ecol Appl 7:1237–1251

    Article  Google Scholar 

  • Padu E, Kollist H, Tulva I, Oksanen E, Moldau H (2005) Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO2 and O3 enrichment. New Phytol 165:131–142

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen SS, Mishra A, Sahu N, Pandey V, Oksanen E (2015) Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: results from ethylene diurea studies. Sci Total Environ 532:230–238

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Kobayashi K, Zhu J (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ 132:203–211

    Article  CAS  Google Scholar 

  • Paoletti E (2006) Impact of ozone on Mediterranean forests: a review. Environ Pollut 144:463–474

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E (2009) Ozone and urban forests in Italy. Environ Pollut 157:1506–1512

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Grulke NE (2010) Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environ Pollut 158:2664–2671

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2010) Erratum to Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Sci Tot Environ 408:2014–2024

    Article  CAS  Google Scholar 

  • Pellegrini E, Francini A, Lorenzini G, Nali C (2011) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217–226

    Article  CAS  Google Scholar 

  • Percy KE, Nosal M, Heilman W, Dann T, Sober J, Legge AH, Karnosky DF (2007) New exposure-based metric approach for evaluating O3 risk to North American aspen forests. Environ Pollut 147:554–566

    Article  CAS  PubMed  Google Scholar 

  • Pfleeger TG, Plocher M, Bichel P (2010) Response of pioneer plant communities to elevated ozone exposure. Agric Ecosyst Environ 138:116–126

    Article  CAS  Google Scholar 

  • Pina JM, Moraes RM (2010) Gas exchange, antioxidants and foliar injuries in saplings of a tropical woody species exposed to ozone. Environ Exp Bot 73:685–691

    CAS  Google Scholar 

  • Pinto E, Sigaudźkutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018

    Google Scholar 

  • Plazek A, Hura K, Rapacz H (2001) The influence of ozone fumigation on metabolic efficiency and plant resistance to fungal pathogens. J Appl Bot 75:8–13

    CAS  Google Scholar 

  • Pleijel H, Dannielsson H (1997) Growth of 27 herbs and grasses in relation to ozone exposure and plant strategy. New Phytol 135:361–367

    Article  Google Scholar 

  • Pleijel H, Eriksen AB, Danielsson H, Bondesson N, Selldén G (2006) Differential ozone sensitivity in an old and a modern Swedish wheat cultivar—grain yield and quality, leaf chlorophyll and stomatal conductance. Environ Exp Bot 56:63–71

    Article  CAS  Google Scholar 

  • Pulikesi M, Baskaralingam P, Rayudu VN, Elango D, Ramamurthi V, Sivanesan S (2006) Surface ozone measurements at urban coastal site Chennai, in India. J Hazard Mater 137:1554–1559

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Agrawal M (2008) Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Sci Tot Environ 407:679–691

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2012) Impact of tropospheric ozone on crop plants. Proc Nat Acad Sci India Sect B Biol Sci 82:241–257

    Google Scholar 

  • Rai R, Agrawal M (2014) Assessment of competitive ability of two Indian wheat cultivars under ambient O3 at different developmental stages. Environ Sci Pollut R 21:1039–1053

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2010) Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmos Environ 44:4272–4282

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Choudhary KK, Agrawal SB, Emberson L, Büker P (2015) Application of ethylene diurea (EDU) in assessing the response of a tropical soybean cultivar to ambient O3: nitrogen metabolism, antioxidants, reproductive development and yield. Ecotox Environ Safe 112:29–38

    Article  CAS  Google Scholar 

  • Ranford J, Reiling K (2007) Ozone induced leaf loss and decreased leaf production of European Holly (Ilex aquifolium L.) over multiple seasons. Environ Pollut 145:355–364

    Article  CAS  PubMed  Google Scholar 

  • Rebbeck J, Blum U, Heagle AS (1988) Effects of ozone on the regrowth and energy reserves of a ladino-clover- tall fescue pasture. J Appl Ecol 25:659–681

    Article  CAS  Google Scholar 

  • Reddy BSK, Kumar KR, Balakrishnaiah G, Gopal KR, Reddy RR, Sivakumar V, Lal S (2012) Analysis of diurnal and seasonal behavior of surface ozone and its precursors (NOx) at a semi-arid rural site in Southern India. Aerosol Air Qual Res 12:1081–1094

    CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Greshaam C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  Google Scholar 

  • Reiling K, Davison AW (1992) Effects of a short ozone exposure given at different stages in the development of Plantago major L. New Phytol 12:643–647

    Article  Google Scholar 

  • Richet N, Afif D, Huber F, Pollet B, Banvoy J, El Zein R, Lapierre C, Dizengremel P, Perre’ P, Cabane M (2011) Cellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula alba). J Exp Bot 62(10):3575–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riikonen J, Holopainen T, Oksanen E, Vapaavuori E (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiol 25:621–632

    Article  CAS  PubMed  Google Scholar 

  • Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications, Science Policy report 15/08. The Royal Society, London

    Google Scholar 

  • Ryang SZ, Woo SY, Kwon SY, Kim SH, Lee SH, Kim KN, Lee DK (2009) Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone. Photosynthetica 47:19–25

    Article  CAS  Google Scholar 

  • Sadanaga Y, Shibata S, Hamana M, Takenaka N, Bandow H (2008) Weekday/weekend difference of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmos Environ 42:4708–4723

    Article  CAS  Google Scholar 

  • Saitanis CJ, Panagopoulous G, Dasopoulou V, Agathokleous E, Papatheohari Y (2015) Integrated assessment of ambient ozone phytotoxicity in Greece’s Tripolis Plateau. J Agr Meteorol 71:55–64

    Article  Google Scholar 

  • Sandermann JH (2000) Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool. Environ Pollut 108:327–332

    Article  CAS  PubMed  Google Scholar 

  • Santos ACDR, Furlan CM (2013) Levels of phenolic compounds in Tibouchina pulchra after fumigation with ozone. Atmos Pollut Res 4:250–256

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010a) Elevated ozone and two modern wheat cultivars: an assessment of dose-dependent sensitivity with respect to growth, reproductive, and yield parameters. Environ Exp Bot 69:328–337

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010b) Identification of ozone stress in Indian rice through foliar injury and differential protein profile. Environ Monit Assess 161:283–302

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2011) Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone using open top chambers. J Environ Man 95:S19–S24

    Article  CAS  Google Scholar 

  • Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of O3 on tropical wheat using integrated phenotypical, physiological, biochemical and proteomics approaches. J Proteome Res 9:4565–4584

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotox Environ Safe 115:101–111

    Article  CAS  Google Scholar 

  • Saviranta NM, Julkunen-Tiitto R, Oksanen E, Karjalainen RO (2010) Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut 158:440–446

    Article  CAS  PubMed  Google Scholar 

  • Scebba F, Canaccini F, Castagna A, Bender J, Weigel HJ, Ranieri A (2006) Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition. Environ Pollut 142:540–548

    Article  CAS  PubMed  Google Scholar 

  • Severino JF, Stich K, Soja G (2007) Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves. Environ Pollut 146:707–714

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

    Article  CAS  Google Scholar 

  • Simmonds PG, Derwent RG, Manning AL, Spain G (2004) Significant growth in surface ozone at Mace Head, Ireland, 1987–2003. Atmos Environ 38:4769–4778

    Article  CAS  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2009) Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of global climate change. Plant Biol 11:101–108

    Article  CAS  PubMed  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agri Ecosyst Environ 135:168–177

    Article  CAS  Google Scholar 

  • Singh P, Singh S, Agrawal SB, Agrawal M (2012) Assessment of the interactive effects of ambient O3 and NPK levels on two tropical mustard varieties (Brassica campestris L.) using open-top chambers. Environ Monit Assess 184(10):5863–5874

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Bhatia A, Tomer R, Kumar V, Singh B, Singh SD (2013) Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Environ Monit Assess 185:6517–6529

    Article  CAS  PubMed  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014a) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21:2628–2641

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014b) Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages. Ecotoxicology 23:1447–1463

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2014c) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agric Ecosys Environ 199:26–33

    Article  CAS  Google Scholar 

  • Singh AA, Singh S, Agrawal M, Agrawal SB (2015) Assessment of ethylene diurea-unduced protection in plants against ozone phytotoxicity. DM Whitacre (Ed.) Rev Environ Cont Toxicol 233:129–184

    Google Scholar 

  • Singla V, Satsangi A, Pachauri T, Lakhani A, Kumari KM (2011) Ozone formation and destruction at a sub-urban site in North Central region of India. Atmos Res 101:373–385

    Article  CAS  Google Scholar 

  • Sinha B, Singh Sangwan K, Maurya Y, Kumar V, Sarkar C, Chandra BP, Sinha V (2015) Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements. Atmos Chem Phys Discuss 15:2355–2404

    Article  Google Scholar 

  • Sun J, Feng Z, Ort DR (2014) Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean. Plant Sci 226:147–161

    Article  CAS  PubMed  Google Scholar 

  • Tai APK, Martin MV, Heald CL (2014) Threat to future global food security from climate change and ozone air pollution. Nat Clim Chang 4:817–821

    Article  CAS  Google Scholar 

  • Tang H, Takigawa M, Liu G, Zhu J, Kobayashi K (2013) A projection of ozoneźinduced wheat production loss in China and India for the years 2000 and 2020 with exposureźbased and fluxźbased approaches. Global Chang Biol 19:2739–2752

    Google Scholar 

  • Then C, Herbinger K, Luis VC, Heerdt C, Matyssek R, Wieser G (2009) Photosynthesis, chloroplast pigments, and antioxidants in Pinus canariensis under free-air ozone fumigation. Environ Pollut 157:392–395

    Article  CAS  PubMed  Google Scholar 

  • Thomas MD (1951) Gas damage to plants. Ann Rev Plant Physiol 2:293–322

    Article  CAS  Google Scholar 

  • Tiedemann AV, Firsching KH (2000) Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environ Pollut 108:357–363

    Article  CAS  Google Scholar 

  • Tiwari S, Rai R, Agrawal M (2008) Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. Int J Remote Sens 29:4499–4514

    Article  Google Scholar 

  • Tonneijck AEG, Franzaring J, Brouwer G, Metselaar K, Dueck TA (2004) Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three- year experiment in open-top chambers. Environ Pollut 131:205–213

    Article  CAS  PubMed  Google Scholar 

  • Toumainen J, Pellinen R, Roy S, Kiiskinen M, Eloranta T, Karjalainen R, Kangasjärvi J (1996) Ozone affect birch (Betula pendula Roth) phenylpropanoid, polyamine and reactive oxygen detoxifying pathways at biochemical and gene expression levels. J Plant Physiol 148:179–188

    Article  Google Scholar 

  • Tripathi R, Agrawal SB (2012) Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters. Ecotox Environ Safe 85:1–12

    Article  CAS  Google Scholar 

  • Turkington R, Klein E, Maze J (1994) Conditioning effects by neighbours on the growth and form of Trifolium repens. Can J Bot 72:783–787

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (US EPA) (2006) Air quality criteria for resistance and a possible metric. Atmos Environ 38:2323–2337

    Google Scholar 

  • U.S. Environmental Protection Agency US EPA (2009) 1980–2008 Average annual emissions, all criteria pollutants in MS Excel. National Emissions Trend Data, Office of Air Quality planning and Standards

    Google Scholar 

  • Vainonen JP, Kangasjärvi J (2014) Plant signalling in acute ozone exposure. Plant Cell Environ. doi:10.1111/pce.12273

    Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  CAS  Google Scholar 

  • Van Tienhoven AM, Zunckel M, Emberson L, Koosailee A, Otter L (2006) Preliminary assessment of risk of ozone impacts to maize (Zea mays) in southern Africa. Environ Pollut 140:220–230

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F (2005) Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol 25:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • von Tiedemann A, Weigel H, Jäger HJ (1991) Effects of open-top chamber fumigations with ozone on three fungal leaf diseases of wheat and the mycoflora of the phyllosphere. Environ Pollut 72(3):205–224

    Article  CAS  Google Scholar 

  • Wagg S, Mills G, Hayes F, Wilkinson S, Davies WJ (2013) Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris. Environ Pollut 175:82–91

    Article  CAS  PubMed  Google Scholar 

  • Wahid A (2006a) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new varieties in Pakistan. Sci Total Environ 371:304–313

    Article  CAS  PubMed  Google Scholar 

  • Wahid A (2006b) Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmos Environ 40:5342–5354

    Article  CAS  Google Scholar 

  • Wan WX, Xia YJ, Zhang HX, Wang J, Wang XK (2013) The ambient ozone pollution and foliar injury of the sensitive woody plants in Beijing exurban region. Acta Ecol Sin 33:109

    Article  Google Scholar 

  • Wang T, Wei XL, Ding AJ, Poon CN, Lam KS, Li YS, Chan LY, Anson M (2009) Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmos Chem Phys 9:6217–6227

    Article  CAS  Google Scholar 

  • Wang J, Zeng Q, Zhu J, Liu G, Tang H (2013) Dissimilarity of ascorbate–glutathione (AsA–GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure. Agr Ecosyst Environ 165:39–49

    Article  CAS  Google Scholar 

  • Watanabe M, Hoshika Y, Inada N, Wang X, Mao Q, Koike T (2013) Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. Environ Pollut 174:50–56

    Article  CAS  PubMed  Google Scholar 

  • Whitfield CP, Davison AW, Ashendra TW (1998) The effects of nutrient limitation on the response of Plantago major to ozone. New Phytol 140:219–230

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    Article  CAS  PubMed  Google Scholar 

  • Wise M, Calvin K, Thomson A, Clarke L, Lamberty BB, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A metaźanalytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative metaźanalysis. Global Chang Biol 15:396–424

    Google Scholar 

  • World Health Organization (2006) WHO ambient air quality guidelines. http://w3.whosea.org/techinfo/air.htm

  • Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, Wang Y (2008) Long term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys 8:215–243

    Article  Google Scholar 

  • Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa JI, Akimoto H (2006) Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the community multi-scale air quality model: what controls surface ozone levels over Japan? Atmos Environ 40:1856–1868

    Article  CAS  Google Scholar 

  • Yan K, Chen W, He X, Zhang G, Xu S, Wang L (2010) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ Exp Bot 69:198–204

    Article  CAS  Google Scholar 

  • Ye ZZ, Rodriguez R, Tran A, Hoang H, De Los Santos D, Brown S, Vellanoweth RL (2000) The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci 158:115–127

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Fu X, Ge F (2012) Enhanced sensitivity to higher ozone in a pathogen-resistant tobacco cultivar. J Exp Bot 63:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8:369–387

    Article  CAS  Google Scholar 

  • Zhang W, Feng Z, Wang X, Niu J (2012) Responses of native broadleaved woody species to elevated ozone in subtropical China. Environ Pollut 163:149–157

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Feng Z, Wang X, Niu J (2014a) Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng. Plant Sci 226:182–188

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang G, Liu X, Feng Z (2014b) Effects of elevated O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China. Plant Sci 226:172–181

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Wang Y, Zeng T (2009) East China plains: a “basin” of ozone pollution. Environ Sci Technol 43:1911–1915

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Feng Z, Sun T, Liu X, Tang H, Zhu J, Guo W, Kobayashi K (2011) Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Chang Biol 17:2697–2706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rai, R., Singh, A.A., Agrawal, S.B., Agrawal, M. (2016). Tropospheric O3: A Cause of Concern for Terrestrial Plants. In: Kulshrestha, U., Saxena, P. (eds) Plant Responses to Air Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-10-1201-3_14

Download citation

Publish with us

Policies and ethics