Skip to main content

Snow Mold Fungi

  • Chapter
  • First Online:
Snow Mold

Abstract

Snow mold fungi include a diverse group of fungi and are not confined to a specific taxon, since they can be found in the Basidiomycota, Ascomycota, and even the non-fungal Oomycota. We cannot directly observe the process of pathogenesis under snow cover, but do see the consequences of infection after snowmelt to gain inferences about the infection process. Such difficulties of direct observation seem to hinder their ecological characterization. However, investigations on snow cover conditions facilitate ecological characterization since snow mold fungi depend almost exclusively on snow cover for survival. Each pathogen may specialize locally both ecologically and pathologically, giving rise to taxonomic confusion because of the scarcity of comparative studies. The confusion has been addressed through mating studies and the development of molecular analysis techniques. In this chapter, we emphasized more on what snow mold fungi do (ecology) than what they are (taxonomy).

figure a

Sclerotia of Typhula ishikariensis (top) and Sclerotinia borealis (bottom, courtesy, T. Hoshino) produced on diseased plants. Fungal cultures are easily established in snow mold fungi; sclerotial samples are persistent and represent the best source for fungal isolation, and mycelia readily develop from sclerotia when incubated at right temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amano Y, Ozeki Y (1981) Winter wheat breeding for resistance to snow mold and cold hardiness 1. Development of testing method and application for the classification of resistant varieties. Bull Hokkaido Pref Agric Exp Stn 46:12–21 (in Japanese)

    Google Scholar 

  • Anderson JB, Ullrich RC (1979) Biological species of Armillaria mellea in North America. Mycologia 71:402–414

    Article  Google Scholar 

  • Araki T (1975) Outbreak of snow mold on forage grasses in Hokkaido. Shokubutsu Boueki 29:484–488 (in Japanese)

    Google Scholar 

  • Årsvoll K (1973) Winter damage in Norwegian grasslands, 1968–1971. Meld Norg LandbrHøgsk 52(3):1-21

    Google Scholar 

  • Årsvoll K (1976) Sclerotinia borealis, sporulation, spore germination and pathogenesis. Meld Norg LandbrHøgsk 55(13):11

    Google Scholar 

  • Årsvoll K, Smith JD (1978) Typhula ishikariensis and its varieties, var. idahoensis comb. Nov. and var. canadensis var. nov. Can J Bot 56:348–364

    Article  Google Scholar 

  • Asuyama H (1940) Leaf blotch of wheat caused by Fusarium nivale. Ann Phytopath Soc Japan 10:51–54

    Article  Google Scholar 

  • Berthier J (1976) Monographie des Typhula Fr., Pistillaria Fr. et genres voisins. Bull Mensuel Soc Lin Lyon Special issue. 214 pp

    Google Scholar 

  • Booth RH, Taylor GS (1976a) Fusarium diseases of cereals X. Straw debris as a source of inoculum for infection of Fusarium nivale in the field. Trans Br Mycol Soc 66:71–75

    Article  Google Scholar 

  • Booth RH, Taylor GS (1976b) Fusarium diseases of cereals XI. Growth and saprophytic activity of Fusarium nivale in soil. Trans Br Mycol Soc 66:77–83

    Article  Google Scholar 

  • Broadfoot WC, Cormack (1941) A low-temperature basidiomycete causing early spring killing of grasses and legumes in Alberta. Phytopathology 31:1058–1059

    Google Scholar 

  • Bruehl GW, Cunfer BM (1971) Physiologic and environmental factors that affect the severity of snow mold of wheat. Phytopathology 61:792–799

    Article  Google Scholar 

  • Bruehl GW, Cunfer BM (1975) Typhula species pathogenic to wheat in the Pacific Northwest. Phytopathology 65:755–760

    Article  Google Scholar 

  • Bruehl GW, Machetmes R (1979) Alleles of the incompatibility factors of Typhula ishikariensis. Can J Bot 57:1252–1254

    Article  Google Scholar 

  • Bruehl GW, Machtmes R (1978) Incompatibility alleles of Typhula incarnata. Phytopathology 68:1311–1313

    Article  Google Scholar 

  • Bruehl GW, Machtmes R (1980) Cultural variation within Typhula idahoensis and T. ishikariensis and the species concept. Phytopathology 70:867–871

    Article  Google Scholar 

  • Bruehl GW, Machtmes R, Kiyomoto R (1975) Taxonomic relationships among Typhula species as revealed by mating experiments. Phytopathology 65:1108–1114

    Article  Google Scholar 

  • Bruehl GW, Machtmes R, Kiyomoto R, Christen A (1978) Incompatibility alleles and fertility of Typhula idahoensis. Phytopathology 68:1307–1310

    Article  Google Scholar 

  • Buller AHR (1931) The effect of diploid on haploid mycelia in Coprinus lagopus, and the biological significance of conjugate nuclei in the hymenomycetes and other higher fungi. In: Researches on fungi, vol IV. Longmans, Green and Co., London, . pp 187–293

    Google Scholar 

  • Burpee LL, Kaye LM, Goulty LG, Lawto MB (1987) Suppression of grey snow mold on creeping bentgrass by an isolate of Typhula phacorrhiza. Plant Dis 71:97–100

    Article  Google Scholar 

  • Cavelier M (1986) Contribution des basidiospores au potential d’inoculum de Typhula incarnata Lasch ex Fries. Med Fac Landouww Rijksuniv Gent 51:547–555

    Google Scholar 

  • Cavelier M, Maroquin C (1978) Interférence d’une épidémie provoqée pour la premiére fois en Belgique par Typhula incarnata Lasch ex Fr. et d’une recrudescence de la jaunisse nanisante de l’orge sur sur escourgeon. Charactérisation des symtômes et evaluation de leurs incidences respectives sur les rendements. Parasitica 34:277–295

    Google Scholar 

  • Chang SW, Scheef E, Abler RAB, Thomson S, Johnson P, Jung G (2006) Distribution of Typhula spp. and Typhula ishikariensis varieties in Wisconsin, Utah, Michigan, and Minnesota. Phytopathology 96:926–933

    Article  CAS  PubMed  Google Scholar 

  • Christen AA, Bruehl GW (1979) Hybridization of Typhula ishikariensis and T. idahoensis. Phytopathology 69:263–266

    Article  Google Scholar 

  • Claridge MF, Den Hollander J (1983) The biotype concept and its application to insect pests of agriculture. Crop Protect 2:85–95

    Article  Google Scholar 

  • Cook RJ (1981) Fusarium diseases of wheat and other small grains in North America. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 39–52

    Google Scholar 

  • Cook RJ, Bruehl GW (1968) Ecology and possible significance of perithecia of Calonectria nivalis in the Pacific Northwest. Phytopathology 58:702–703

    Google Scholar 

  • Cormack MW (1948) Winter crown rot or snow mold of alfalfa, clovers, and grasses in Alberta. I. Occurrence, parasitism, and spread of the pathogen. Can J Res Sect C 26:71–85

    Article  Google Scholar 

  • Cormack MW, Lebeau JB (1959) Snow mold infection of alfalfa, grasses, and winter wheat by several fungi under artificial conditions. Can J Bot 37:685–693

    Article  Google Scholar 

  • Cunfer BM (1974) Sexual incompatibility and aspects of the mono- and dikaryotic phases of Typhula idahoensis. Phytopathology 64:123–127

    Article  Google Scholar 

  • Cunfer BM, Bruehl GW (1973) Role of basidiospores as propagules and observations on sporophores of Typhula idahoensis. Phytopathology 63:115–120

    Article  Google Scholar 

  • Davidson RM, Bruehl GW (1972) Factors affecting the effectiveness of sclerotia of Typhula idahoensis as inoculum. Phytopathology 62:1040–1045

    Article  Google Scholar 

  • Detiffe H, Maraite H, Meyer JA (1981) Evolution de l’infection de Typhula incarnata Lasch ex. Fries sur escourgeon en Belgique. Meded Fac Landbouwwet Rijksuniv Gent 46:841–849

    Google Scholar 

  • Detiffe H, Maraite H, Meyer JA (1985) Facteurs affectant la formation et l’orientation des cordons mycéliens lors de la germination des sclérotes de Typhula incarnata Lasch ex Fries. Parasitica 41:3–12

    Google Scholar 

  • Ergon A, Tronsmo AM (2006) Components of pink snow mould resistance in winter wheat are expressed prior to cold hardening and in detached leaves. J Phytopathol 154:134–152

    Article  Google Scholar 

  • Ergon A, Klemsdal AA, Tronsmo AM (1998) Interaction between cold hardening and Microdochium nivale infection on expression of pathogenesis-related genes in winter wheat. Physiol Mol Plant Pathol 53:301–310

    Article  CAS  Google Scholar 

  • Gams W, Müller E (1980) Conidiogenesis of Fusarium nivale and Rhynchosporium oryzae and its taxonomic implications. Neth J Plant Pathol 86:45–53

    Article  Google Scholar 

  • Garret SD (1970) Competitive saprophytic colonization of substrates by root-infecting fungi. In: Pathogenic root-infecting fungi. Cambridge University Press, London, pp 110–117

    Google Scholar 

  • Gaudet DA (1986) Effect of temperature on pathogenicity of sclerotial and non-sclerotial isolates of Coprinus psychromorbidus under controlled conditions. Can J Plant Pathol 8:394–399

    Article  Google Scholar 

  • Gaudet DA (2001) The low temperature basidiomycetes. In: Iriki N, Gaudet DA, Tronsmo AM, Matsumoto N, Yoshida M, Nishimune A (eds) Low temperature plant microbe interactions under snow. Hokkaido National Agricultural Experiment Station, Sapporo, pp 37–48

    Google Scholar 

  • Gaudet DA, Chen THH (1988) Effect of freezing tolerance and low temperature stress on development of cottony snow mold Coprinus psychromorbidus in winter wheat. Can J Bot 66:1610–1615

    Article  Google Scholar 

  • Glynn NC, Hare MC, Parry DW, Edwards SG (2005) Phylogenetic analysis of EF-1 alpha gene sequences from isolates of Microdochium nivale leads to elevation of varieties majus and nivale to the species status. Mycol Res 109:872–880

    Article  CAS  PubMed  Google Scholar 

  • Groves JW, Bowerman CA (1955) Sclerotinia borealis in Canada. Can J Bot 33:591–594

    Article  Google Scholar 

  • Hewett PD (1983) Seed-borne Gerlachia nivalis (Fusarium nivale) and reduced establishment of winter wheat. Trans Br Mycol Soc 80:185–186

    Article  Google Scholar 

  • Hindorf H (1980a) Zum auftreten der sporophoren von Typhula incarnata im rheinischen wintergersten-anbau. Z PflKrankh PflSchutz 87:501–508

    Google Scholar 

  • Hindorf H (1980b) Bedeutung der sporophoren von Typhula incarnta Lasch ex Fr. für die ausbreitung der wintergersten-fäule. Med Fac Landbouww Rijksuniv Gent 45:121–127

    Google Scholar 

  • Hirane S (1960) Studies on Pythium snow blight of wheat and barley, with special reference to the taxonomy of the pathogens. Trans Mycol Soc Jpn 11:82–87 (in Japanese)

    Google Scholar 

  • Hoshino T, Tojo M, Okada G, Kanda H, Ohgiya S, Ishizaki K (1999) A filamentous fungus, Pythium ultimum Trow var. ultimum, isolated from moribund moss colonies from Svalbard, northern islands of Norway. Polar Biosci 12:68–75

    Google Scholar 

  • Hoshino T, Tojo M, Tronsmo AM (2000) Pythium blight of moss colonies (Sanionia uncinata) in Finnmark. Polarflokken 24:161–164

    Google Scholar 

  • Hoshino T, Tkachenko OB, Tronsmo AM, Kawakami A, Morita N, Ohgiya S, Ishizaki K, Matsumoto N (2001) Temperature sensitivity and freezing resistance among isolates of Typhula ishikariensis from Russia. Icel Agric Sci 14:61–65

    Google Scholar 

  • Hoshino T, Kiriaki M, Yumoto I, Kawakami A (2004a) Genetic and biological characteristics of Typhula ishikariensis from northern Iceland. Acta Bot Isl 14:59–70

    Google Scholar 

  • Hoshino T, Tkachenko OB, Kiriaki M, Yumoto I, Matsumoto N (2004b) Winter damage caused by Typhula ishikariensis biological species I on conifer seedlings and hop roots collected in the Volga-Ural regions of Russia. Can J Plant Pathol 26:391–396

    Article  Google Scholar 

  • Hoshino T, Asef MR, Fujiwara M, Yumoto I, Zare R (2007) One of the southern limits of geographic distribution of sclerotium forming snow mould fungi: first records of Typhula species from Iran. Rostaniha 8:35–45

    Google Scholar 

  • Hsiang T, Cook S (2001) Effect of Typhula phacorrhiza on winter injury in field trials across Canada. Inter Turfgrass Soc Res J 9:669–673

    Google Scholar 

  • Hsiang T, Wu C (2000) Genetic relationships of pathogenic Typhula species assessed by RAPD, ITS-RFLP and ITS sequencing. Mycol Res 104:16–22

    Article  CAS  Google Scholar 

  • Hsiang T, Matsumoto N, Millett SM (1999) Biology and management of Typhula snow molds of turfgrass. Plant Dis 83:788–798

    Article  Google Scholar 

  • Hwang SF, Gaudet DA (1998) Effects of low-temperature stress on development of winter crown rot in first-year alfalfa. Can J Plant Sci 78:689–695

    Article  Google Scholar 

  • Ichitani T, Takamatsu S, Stamps DJ (1986) Identification and pathogenicity of three species of Pythium newly isolated from diseased wheat and barley just after thawing in Japan. Ann Phytopath Soc Japan 52:209–216

    Article  Google Scholar 

  • Imai S (1930) On the Clavariaceae of Japan. II. Transact Sapporo Nat Hist Soc 11:70–77

    Google Scholar 

  • Jacobs DL, Bruehl GW (1986) Saprophytic ability of Typhula incarnata, T. idahoensis, and T. ishikariensis. Phytopathology 76:695–698

    Article  Google Scholar 

  • Jewell LE, Hsiang T (2013) Multi-gene differences between Microdochium nivale and Microdochium majus. Can J Bot 91:99–106

    Article  CAS  Google Scholar 

  • Kiyomoto RK, Bruehl GW (1976) Sexual incompatibility and virulence in Typhula idahoensis. Phytopathology 66:1001–1006

    Article  Google Scholar 

  • Kohn LM (1979) Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology 69:881–886

    Article  Google Scholar 

  • Korhonen K (1978) Intersterility groups of Heterobasidion annosum. Commun Inst Forest Fenn 94:1–25

    Google Scholar 

  • Laroche A, Gaudet DA, Schaalje GB, Erickson RS, Ginns J (1995) Grouping and identification of low temperature basidiomycetes using mating, RAPD and RFLP analyses. Mycol Res 99:297–310

    Article  Google Scholar 

  • Lebeau JB, Dickson JG (1955) Physiology and nature of disease development in winter crown rot of alfalfa. Phytopathology 45:667–673

    CAS  Google Scholar 

  • Lees AK, Nicholson P, Rezanoor HN, Parry DW (1995) Analysis of variation within Microdochium nivale from wheat: evidence for a distinct sub-group. Mycol Res 99:103–109

    Article  Google Scholar 

  • Lévesque CA, De Cock WAM (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108:1363–1383

    Article  PubMed  CAS  Google Scholar 

  • Lipps PE (1980) A new species of Pythium isolated from wheat beneath snow in Washington. Mycologia 72:1127–1133

    Article  Google Scholar 

  • Lipps PE, Bruehl GW (1978) Snow rot of winter wheat in Washington. Phytopathology 68:723–726

    Article  Google Scholar 

  • Litschko L, Burpee LL (1987) Variation among isolates of Microdochium nivale collected from wheat and turfgrass. Trans Br Mycol Soc 89:252–256

    Article  Google Scholar 

  • Mahuku GS, Hsiang T, Yang L (1998) Genetic diversity of Microdochium nivale isolates from turfgrass. Mycol Res 102:559–567

    Article  CAS  Google Scholar 

  • Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV (2014) Draft genome sequence of Sclerotinia borealis, a psychrophilic plant pathogenic fungus. Genome Announc 2(1):e01175–13. doi:10.1128/genomeA.01175-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto N (1989) Autecology of the pathogenic species of Typhula. Res Bull Hokkaido Natl Agric Exp Stn 152:91–162 (in Japanese)

    Google Scholar 

  • Matsumoto N (1994) Ecological adaptations of low temperature plant pathogenic fungi to diverse winter climates. Can J Plant Pathol 16:237–240

    Article  Google Scholar 

  • Matsumoto N (1997) Evolution and adaptation in snow mold fungi. Soil Microorg 50:13–19 (in Japanese)

    Google Scholar 

  • Matsumoto N (2008) Germination inability of Typhula ishikariensis biotype A sclerotia in late fall. Ann Phytopathol Soc Jpn 74:212 (in Japanese)

    Google Scholar 

  • Matsumoto N, Araki T (1982) Field observation of snow mold pathogens of grasses under snow cover in Sapporo. Res Bull Hokkaido Natl Agric Exp Stn 135:1–10

    Google Scholar 

  • Matsumoto N, Hoshino T (2013) Change in snow mold flora in eastern Hokkaido and its impact on agriculture. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world: proceedings of the plant and microbe adaptation to cold conference 2012. Springer, New York, pp 255–261

    Chapter  Google Scholar 

  • Matsumoto N, Sato T (1982) The saprophytic competitive abilities of Typhula incarnata and T. ishikariensis. Ann Phytopath Soc Japan 48:419–424

    Article  Google Scholar 

  • Matsumoto N, Sato T (1983) Niche separation in the pathogenic species of Typhula. Ann Phytopath Soc Japan 49:293–298

    Article  Google Scholar 

  • Matsumoto N, Tajim A (1989) Incompatibility alleles in populations of Typhula incarnata and T. ishikariensis biotype B in an undisturbed habitat. Trans Mycol Soc Jpn 30:373–376

    Google Scholar 

  • Matsumoto N, Tajimi A (1985) Field survival of sclerotia of Typhula incarnata and of T. ishikariensis biotype A. Can J Bot 63:1126–1128

    Article  Google Scholar 

  • Matsumoto N, Tajimi A (1991) Typhula ishikariensis biotypes B and C, a single biological species. Trans Mycol Soc Japan 32:273–281

    Google Scholar 

  • Matsumoto N, Tajimi A (1992) Biological control of Typhula ishikariensis on perennial ryegrass. Ann Phytopath Soc Japan 58:741–751

    Article  Google Scholar 

  • Matsumoto N, Tajimi A (1993) Interfertility in Typhula ishikariensis biotype A. Trans Mycol Soc Japan 34:209–213

    Google Scholar 

  • Matsumoto N, Sato T, Araki T (1982) Biotype differentiation in the Typhula ishikariensis complex and their allopatry. Ann Phytopath Soc Japan 48:275–280

    Article  Google Scholar 

  • Matsumoto N, Sato T, Akaki T, Tajimi A (1983) Genetic relationships within the Typhula ishikariensis complex. Trans Mycol Soc Japan 24:313–318

    Google Scholar 

  • Matsumoto N, Abe J, Shimanuki T (1995) Variation within isolates of Typhula incarnata from localities differing in winter climate. Mycoscience 36:155–158

    Article  Google Scholar 

  • Matsumoto N, Tronsmo AM, Shimanuki T (1996) Genetic and biological characteristics of Typhula ishikariensis isolates from Norway. Eur J Plant Pathol 102:431–439

    Article  Google Scholar 

  • Matsumoto N, Hoshino T, Yamada G, Kawakami A, Hoshino-Takada Y (2010) Sclerotia of Typhula ishikariensis biotype B (Typhulaceae) from archaeological sites (4000 to 400BP) in Hokkaido, Northern Japan. Amer J Bot 97:433–437

    Article  Google Scholar 

  • Mayr E (1963) Species concepts and their application. In: Animal species and evolution. Belknap Press of Harvard University Press, Cambridge, pp 12–30

    Google Scholar 

  • McDonald WC (1961) A review of the taxonomy and nomenclature of some low-temperature forage pathogens. Can Plant Dis Survey 41:256–260

    Google Scholar 

  • Millar CS, Colhoun J (1969) Fusarium diseases of cereals VI. Epidemiology of Fusarium nivale on wheat. Trans Br Mycol Soc 52:195–204

    Article  Google Scholar 

  • Millett SM (1999) Distribution, biological and molecular characterization, and aggressiveness of Typhula snow molds of Wisconsin golf courses. Dissertation, University of Wisconsin-Madison

    Google Scholar 

  • Nakajima T (2007) Making evidence-based good agricultural practice for the reduction of mycotoxin contamination in cereals. Good Agricultural Practice (GAP) in Asia and Oceania. Food Fertil Technol Center 9:111–120

    Google Scholar 

  • Nakajima T, Naito S (1995) Effects of soil types on the disease severity of pink snow mod in winter wheat. Annu Rep Plant Protect N Jpn 46:42–44 (in Japasese)

    Google Scholar 

  • Nicolson P, Lees AK, Maurin N, Parry DW, Rezanoor HN (1996) Development of a PCR assay to identify and quantify Microdochium nivale var. nivale and Microdochium nivale var. majus in wheat. Physiol Mol Plant Pathol 48:257–271

    Article  Google Scholar 

  • Nissinen O (1996) Analyses of climatic factors affecting snow mould injury in first-year timothy (Phleum pratense L.) with special reference to Sclerotinia borealis. Acta Univ Oul A 289:1–115

    Google Scholar 

  • Noble M, Montgomerie IG (1956) Griphosphaeria nivalis (Schaffnit) Müller and von Arx and Leptosphaeria avenaria Weber on oats. Trans Br Mycol Soc 39:449–459

    Article  Google Scholar 

  • Olariaga I, Ryman S, Salcedo I (2008) Lectotypification of Typhula graminum and description of T. berthieri sp. nov. Cryptogam Mycol 29:145–155

    Google Scholar 

  • Ozaki M (1979) Ecological study of Sclerotinia snow blight disease of orchardgrass. Bull Hokkaido Pref Agric Exp Stn 42:55–65 (in Japanese)

    Google Scholar 

  • Perry DA (1986) Pathogenicity of Monographella nivalis to spring barley. Trans Br Mycol Soc 86:287–293

    Article  Google Scholar 

  • Pianka ER (1970) On r- and K-selection. Amer Natur 104:592–597

    Article  Google Scholar 

  • Piening LJ, Orr DD, Bhalla M (1990) Survival of Coprinus psychromorbidus under continuous cropping. Can J Plant Pathol 12:217–218

    Article  Google Scholar 

  • Purdy LH (1979) Sclerotinia sclerotiorum: diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  • Readhead SA, Traquir JA (1981) Coprinus sect. Herbicolae from Canada, notes on extralimital taxa, and the taxonomic position of a low temperature basidiomycete crop pathogen from western Canada. Mycotaxon 13:373–404

    Google Scholar 

  • Remsberg RE (1940a) Studies in the genus Typhula. Mycologia 32:52–96

    Article  Google Scholar 

  • Remsberg RE (1940b) The snow molds of grains and grasses caused by Typhula itoana and Typhula idahoensis. Phytopathology 30:178–180

    Google Scholar 

  • Röed H (1960) Sclerotinia borealis Bub. & Vleug., a cause of winter injuries to winter cereals and grasses in Norway. Acta Agric Scand 10:74–82

    Article  Google Scholar 

  • Røed H (1969) Et bidrag til oppklaring av forholdet mellom Typhula graminum Karst. og Typhula incarnata Lasch ex Fr. Friesia 9:219–225

    Google Scholar 

  • Saito I (1988) The influence of the position of sclerotial inoculums on the effectiveness of fungicides for the control of Typhula ishikariensis in fields of winter wheat. In: Abstracts of the 5th international congress of plant pathology, Kyoto, August

    Google Scholar 

  • Saito I (1997) Sclerotinia nivalis, sp. nov, the pathogen of snow mold of herbaceous dicots in northern Japan. Mycoscience 38:227–236

    Article  Google Scholar 

  • Saito I (1998) Non-gramineous hosts of Myriosclerotinia borealis. Mycoscience 39:145–153

    Article  Google Scholar 

  • Saito I (2001) Snow mold fungi in the Sclerotiniaceae. In: Iriki N, Gaudet DA, Tronsmo AM, Matsumoto N, Yoshida M, Nishimune A (eds) Low temperature plant microbe interactions under snow. Hokkaido National Agricultural Experiment Station, Sapporo, pp 37–48

    Google Scholar 

  • Saito I (2006) Species of Sclerotinia causing snow mold and their infraspecific differentiation. Ann Rept Phytopath Soc Japan, Hokkaido Branch 33:13–19 (in Japanese)

    Google Scholar 

  • Saito I, Tkachenko OB (2003) Low temperature species of Sclerotinia causing plant diseases in winter. In: Huang HC, Acharya SN (eds) Advances in plant disease management. Research Signpost, Kerala, pp 195–214

    Google Scholar 

  • Saito I, Tkachenko OB, Kuninaga S (2011) Species criteria of Sclerotinia borealis in the genus Sclerotinia sens lato. In: Abstracts of the 55th Annual Meeting of the Mycological Society of Japan, Sapporo, September 2011 (in Japanese)

    Google Scholar 

  • Samuels GJ, Hallett IC (1983) Microdochium stoveri and Monographella stoveri, new combinations for Fusarium stoveri and Micronectriella stoveri. Trans Br Mycol Soc 81:473–483

    Article  Google Scholar 

  • Sato T, Abe T, Etori R, Tanaka H, Yamakawa M, Morimoto M (2009) Winter killing of timothy at Tokachi district in 2008. Bull Hokkaido Grassl Res Assoc 43:43 (in Japanese)

    Google Scholar 

  • Schneider EF, Seaman WL (1986) Typhula phacorrhiza on winter wheat. Can J Plant Pathol 8:269–276

    Article  Google Scholar 

  • Scott SW (1981) Separation of Sclerotinia isolates collected from three herbage legume hosts. Trans Br Mycol Soc 76:321–323

    Article  Google Scholar 

  • Scott SW (1984) Clover rot. Bot Rev 50:491–504

    Article  Google Scholar 

  • Simizu M (1993) Control of “supponuke” snow blight on winter wheat. Hokuno 60:298–303 (in Japanese)

    Google Scholar 

  • Simizu M (2014) The ecology and control of supponuke – why disappeared? In: Abstracts of the 2nd ecology and control workshop, Phytopathological Society of Japan, Sapporo, June 2014 (in Japanese)

    Google Scholar 

  • Simizu M, Miyajima K (1990) Occurrence of “supponuke” snow blight on winter wheat. Ann Phytopath Soc Japan 56:141–142 (in Japanese)

    Google Scholar 

  • Simizu M, Miyajima K (1992a) Distribution of winter wheat supponuke snow mold. Ann Phytopath Soc Japan 58:147–148 (in Japanese)

    Google Scholar 

  • Simizu M, Miyajima K (1992b) Comparisons between the wheat supponuke fungus and LTB from Canada. Ann Phytopath Soc Japan 58:148 (in Japanese)

    Google Scholar 

  • Sinadoskii YV, Tkachenko OB (1981) Corrective to the taxonomic position of Typhula blight of tulips. Mycol Phytopathol 15:423–425 (in Russian)

    Google Scholar 

  • Smiley RW, Dernoeden PH, Clarke BB (2005) Compendium of turfgrass diseases, 3rd edn. American Phytopathological Society, St. Paul, 167 pp

    Google Scholar 

  • Smith JD (1983) Fusarium nivale (Gerlachia nivalis) from cereals and grasses: is it the same fungus? Can Pl Dis Surv 63:25–26

    Google Scholar 

  • Smith JD (1987) Winter-hardiness and overwintering diseases of amenity turgrasses with special reference to the Canadian Prairies. Technical bulletin, 1987-12E, Agriculture Canada, Saskatoon

    Google Scholar 

  • Smith JD (1992) Snow mould fungi in Canada. Norw J Agric Sci Suppl 7:5–12

    CAS  Google Scholar 

  • Snider CS, Hsiang T, Zhao G, Griffith M (2000) Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds. Phytopathology 90:354–361

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto T, Miura T, Kobayashi J (1959) Studies on the sclerotial rot of carrot roots. Mem Fac Agric Hokkaido Univ 3(2):121–129 (in Japasese)

    Google Scholar 

  • Takamatsu S (1990) Habitat segregation of Pythium snow rot fungi of wheat and barley. Shokubutu Boueki 44:7–10 (in Japanese)

    Google Scholar 

  • Takamatsu S (1993) Vertical distribution of Pythium iwayamai and Pythium paddicum in paddy field, upland field and converted upland field soils. Bull Fukui Agric Exp Stn 30:27–36 (in Japanese)

    Google Scholar 

  • Takamatsu S, Ichitani T (1987a) Detection of Pythium snow rot fungi in diseased leaves of wheat and barley grown in paddy fields and upland fields. Ann Phytopathol Soc Jpn 53:56–59

    Article  Google Scholar 

  • Takamatsu S, Ichitani T (1987b) Detection of Pythium snow rot fungi in the soils having no cultivation history of wheat and barley. Ann Phytopath So Japan 53:650–654

    Article  Google Scholar 

  • Takenaka S, Arai M (1993) Dynamics of three snow mold pathogens Pythium paddicum, Pythium iwayamai, and Typhula incarnata in barley plant tissues. Can J Bot 71:757–763

    Article  Google Scholar 

  • Tani T, Beard JB (1997) Microdochium patch. In: Color atlas of Turfgrass diseases – disease characteristics and control. Chelsea, Ann Arbor, pp 125–127

    Google Scholar 

  • Tasugi H (1936) On the physiology of Typhula graminium Karst. Ann Phytopathol Soc Jpn 6:155–156 (in Japanese)

    Article  Google Scholar 

  • Terami F, Kawakami A (2006) Distribution of two pink snow mold varieties in Hokkaido prefecture and diversity of their growth speed. Ann Phytopathol Soc Jpn 72:203 (in Japanese)

    Google Scholar 

  • Tkachenko OB (1984) Behaviour of Typhula ishikariensis sclerotia in soil. Proceedings of the young specialists conference, Moscow, 1984

    Google Scholar 

  • Tkachenko OB, Matsumoto N, Shimanuki T (1997) Mating patterns of east-European isolates of Typhula ishikariensis S. Imai with isolates from distant regions. Mycol Phytopathol 31:68–72

    Google Scholar 

  • Tkachenko OB, Saito I, Novozhilova OA (2003) A new snow mold Sclerotinia fungus in Russia. J Russian Phytopathol Soc 4:59–67

    Google Scholar 

  • Tkechenko OB (2013) Snow mold fungi in Russia. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world: proceedings of the plant and microbe adaptation to cold conference 2012. Springer, New York, pp 293–303

    Chapter  Google Scholar 

  • Tochinai Y, Sugimoto T (1958) Studies on the sclerotial disease of Artemisia maritima L. Mem Res Fac Agric Hokkaido Univ 3(1):149–153 (in Japanese)

    Google Scholar 

  • Todd NK, Rayner ADM (1980) Fungal individualism. Sci Prog, Oxf 66:331–354

    Google Scholar 

  • Tojo M, Van West P, Hoshino T, Kida K, Fujii H, Hakoda A, Kawaguchi Y, Mühlhauser HA, Van Den Berg AH, Küpper FC, Herrero ML, Klemsdal SS, Tronsmo AM, Kanda H (2012) Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctica. Fungal Biol 116:756–768

    Article  PubMed  Google Scholar 

  • Tomiyama K (1955) Studies on the snow blight disease of winter cereals. Res Bull Hokkaido Natl Agric Exp Stn 47:1–234 (in Japanese)

    Google Scholar 

  • Traquair JA (1980) Conspecificity of an unidentified snow mold basidiomycete and a Coprinus species in the section Herbicolae. Can J Plant Pathol 2:105–115

    Article  Google Scholar 

  • Tronsmo AM, Hsiang T, Okuyama H, Nakajima T (2001) Low temperature diseases caused by Microdochium nivale. In: Iriki N, Gaudet DA, Tronsmo AM, Matsumoto N, Yoshida M, Nishimune A (eds) Low temperature plant microbe interactions under snow. Hokkaido National Agricultural Experiment Station, Sapporo, pp 75–86

    Google Scholar 

  • Vergara GV, Bughrara SS, Jung G (2004) Genetic variability of grey snow mould (Typhula incarnata). Mycol Res 108:1283–1290

    Article  CAS  PubMed  Google Scholar 

  • Ward EWB, Lebeau JB, Cormack MW (1961) Grouping of isolates of a low-temperature basidiomycete on the basis of cultural behavior and pathogenicity. Can J Bot 39:297–306

    Article  Google Scholar 

  • Woodbridge B, Coley-Smith JR (1991) Identification and characterization of isolates of Typhula causing snow rot of barley in the United Kingdom. Mycol Res 95:995–999

    Article  Google Scholar 

  • Wu C, Hsiang T (1998) Pathogenicity and formulation of Typhula phacorrhiza, a biocontrol agent of gray snow mold. Plant Dis 82:1003–1006

    Article  Google Scholar 

  • Wu C, Hsiang T (1999) Mycelial growth, sclerotial production and carbon utilization of three Typhula species. Can J Bot 77:312–317

    Article  Google Scholar 

  • Wu C, Hsiang T, Yang L, Liu L (1998) Efficacy of Typhula phacorrhiza as a biocontrol agent of grey snow mould of creeping bentgrass. Can J Bot 76:1276–1281

    Google Scholar 

  • Yamada G (1998) Agricultural fields of the Ainu in Early Modern times. Arichaeol J 439:26–30 (in Japanese)

    Google Scholar 

  • Yamada G (1993) Cultivated plants occurred from the Prymorye region -especially on buckwheat and barley-. Pre Rep “Res Proj Hist Cult Exchange North” in 1993. Hist Mus Hokkaido, Sapporo pp 29–50 (in Japanese)

    Google Scholar 

  • Yamana T (2012) Reassessment of high-ridge cultivation method predisposing winter wheat to Sclerotinia snow mold. Annu Rep Plant Protect N Jpn 63:27–31 (in Japanese)

    Google Scholar 

  • Yang Y, Chen F, Hsiang T (2006) Fertile sporophore production of Typhula phacorrhiza in the field is related to temperatures near freezing. Can J Microbiol 52:9–15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Matsumoto, N., Hsiang, T. (2016). Snow Mold Fungi. In: Snow Mold. Springer, Singapore. https://doi.org/10.1007/978-981-10-0758-3_3

Download citation

Publish with us

Policies and ethics